electron devices
Recently Published Documents


TOTAL DOCUMENTS

2125
(FIVE YEARS 219)

H-INDEX

31
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Wen He ◽  
Rui Wang ◽  
Feiyu Guo ◽  
Jizhou Cao ◽  
Zhihao Guo ◽  
...  

There has been growing interest in transparent conductive substrates due to the prevailing flexible electron devices and the need for sustainable resources. In this study, we demonstrated a transparent fast-growing poplar veneers prepared by acetylated modification, followed by the infiltration of epoxy resin. The work mainly focused on the effect of acetylation treatment using a green catalyst of 4-Dimethylpyridine on the interface of the bulk fast-growing poplar veneer, and the result indicated that the interface hydrophobicity was greatly enhanced due to the higher substitute of acetyl groups; therefore, the interface compatibility between the cell wall and epoxy resin was improved. The obtained transparent fast-growing poplar veneers, hereafter referred to as TADPV, displayed a superior optical performance and flexibility, in which the light transmittance and haze were 90% and 70% at a wavelength of 550 nm, respectively, and the bending radius and bending angle parallel to grain of TADPV were 2 mm and 130°, respectively. Moreover, the tensile strength and tensile modulus of the TADPV were around 102 MPa and 198 MPa, respectively, which is significantly better than those of the plastic substrates used in flexible electron devices. At the same time, the thermal conductivity tests indicated that TADPV has a low coefficient of thermal conductivity of 0.34 Wm−1 K−1, which can completely meet the needs of transparent conductive substrates. Therefore, the obtained TADPV can be used as a candidate for a flexible transparent substrate of electron devices.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 50
Author(s):  
Matthias Kocher ◽  
Mathias Rommel ◽  
Pawel Michalowski ◽  
Tobias Erlbacher

Ohmic contacts on p-doped 4H-SiC are essential for the fabrication of a wide range of power electron devices. Despite the fact that Ti/Al based ohmic contacts are routinely used for ohmic contacts on p-doped 4H-SiC, the underlying contact formation mechanisms are still not fully understood. TLM structures were fabricated, measured and analyzed to get a better understanding of the formation mechanism. SIMS analyses at the Ti3SiC2-SiC interface have shown a significant increase of the surface near Al concentration. By using numerical simulation it is shown that this additional surface near Al concentration is essential for the ohmic contact formation.


2021 ◽  
Vol 92 (12) ◽  
pp. 124704
Author(s):  
A. Likhachev ◽  
Yu. Kovshov ◽  
S. Kishko ◽  
S. Ponomarenko ◽  
S. Vlasenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document