Lorentz invariance violation and the spectrum and source power of ultrahigh energy cosmic rays

2005 ◽  
Vol 23 (2) ◽  
pp. 203-209 ◽  
Author(s):  
F.W. Stecker ◽  
S.T. Scully
2005 ◽  
Vol 20 (14) ◽  
pp. 3139-3142 ◽  
Author(s):  
F. W. STECKER

Observations of the multi-TeV spectra of the Mkn 501 and other nearby BL Lac objects exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with IR photons having a flux level as determined by various astronomical observations. After correcting for such intergalactic absorption, these spectra can be explained within the framework of synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of this annihilation via electron-positron pair production puts strong constraints on Lorentz invariance violaition. Such constraints have important implications for some quantum gravity and large extra dimension models. A much smaller amount of Lorentz invariance violation has potential implications for understanding the spectra of ultrahigh energy cosmic rays.


2007 ◽  
Vol 16 (12b) ◽  
pp. 2343-2355
Author(s):  
F. W. STECKER

The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in the fall of 2007, will measure the spectra of distant extragalactic sources of high energy γ-rays, particularly active galactic nuclei and γ-ray bursts. GLAST can look for energy-dependent γ-ray propagation effects from such sources as a signal of Lorentz invariance violation (LIV). These sources should also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. Such annihilations result in electron–positron pair production above a threshold energy given by 2me in the center-of-momentum frame of the system, assuming Lorentz invariance. If Lorentz invariance is violated, this threshold can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence of such absorption features in the spectra of extragalactic sources puts constraints on LIV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring γ-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. As shown by Coleman and Glashow, a much smaller amount of LIV has potential implications for possibly suppressing the "GZK cutoff" predicted to be caused by the interactions of cosmic rays having multijoule energies with photons of the 2.7 K cosmic background radiation in intergalactic space. Owing to the rarity of such ultrahigh energy cosmic rays, their spectra are best studied by a UV-sensitive satellite detector which looks down on a large volume of the Earth's atmosphere to study the nitrogen fluorescence tracks of giant air showers produced by these ultrahigh energy cosmic rays. We discuss here, in particular, a two-satellite mission called OWL, which would be suited for making such studies.


2020 ◽  
Vol 235 ◽  
pp. 07001
Author(s):  
Kelly Malone

The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, anextensive air shower detector consisting of 300 water Cherenkov tanks located at 4100m in Puebla, Mexico, has been surveying the TeV gamma-ray sky for almost five years. HAWC can observe steady sources, variable sources, transients, which allows for probes of both astrophysical and particle physics phenomena. This includes the production and propagation of cosmic rays, studies of Lorentz invariance violation, and dark matter searches. I will discuss recent HAWC results as well as the future of the observatory.


Sign in / Sign up

Export Citation Format

Share Document