threshold energy
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 93)

H-INDEX

37
(FIVE YEARS 4)

2022 ◽  
Vol 12 (2) ◽  
pp. 823
Author(s):  
Md. Rafiqul Islam ◽  
Mehrdad Shahmohammadi Beni ◽  
Shigeki Ito ◽  
Shinichi Gotoh ◽  
Taiga Yamaya ◽  
...  

Proton range monitoring and verification is important to enhance the effectiveness of treatment by ensuring that the correct dose is delivered to the correct location. Upon proton irradiation, different positron emitting radioisotopes are produced by the inelastic nuclear interactions of protons with the target elements. Recently, it was reported that the 16O(p,2p2n)13N reaction has a relatively low threshold energy, and it could be potentially used for proton range verification. In the present work, we have proposed an analysis scheme (i.e., algorithm) for the extraction and three-dimensional visualization of positron emitting radioisotopes. The proposed step-by-step analysis scheme was tested using our own experimentally obtained dynamic data from a positron emission mammography (PEM) system (our developed PEMGRAPH system). The experimental irradiation was performed using an azimuthally varying field (AVF) cyclotron with a 80 MeV monoenergetic pencil-like beam. The 3D visualization showed promising results for proton-induced radioisotope distribution. The proposed scheme and developed tools would be useful for the extraction and 3D visualization of positron emitting radioisotopes and in turn for proton range monitoring and verification.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Yuhang Tan ◽  
Tao Yang ◽  
Kai Liu ◽  
Congcong Wang ◽  
Xiyuan Zhang ◽  
...  

To meet the high radiation challenge for detectors in future high-energy physics, a novel 3D 4H-SiC detector was investigated. Three-dimensional 4H-SiC detectors could potentially operate in a harsh radiation and room-temperature environment because of its high thermal conductivity and high atomic displacement threshold energy. Its 3D structure, which decouples the thickness and the distance between electrodes, further improves the timing performance and the radiation hardness of the detector. We developed a simulation software—RASER (RAdiation SEmiconductoR)—to simulate the time resolution of planar and 3D 4H-SiC detectors with different parameters and structures, and the reliability of the software was verified by comparing the simulated and measured time-resolution results of the same detector. The rough time resolution of the 3D 4H-SiC detector was estimated, and the simulation parameters could be used as guideline to 3D 4H-SiC detector design and optimization.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Saif M. H. Qaid ◽  
Hamid M. Ghaithan ◽  
Khulod K. AlHarbi ◽  
Abrar F. Bin Ajaj ◽  
Bandar Ali Al-Asbahi ◽  
...  

The high crystal quality of formamidium lead bromide perovskite (CH(NH2)2PbBr3 = FAPbBr3) was infiltrated in a mesoporous TiO2 network. Then, high-quality FAPbBr3 films were evaluated as active lasing media, and were irradiated with a picosecond pulsed laser to demonstrate amplified spontaneous emission (ASE), which is a better benchmark of its intrinsic suitability for gain applications. The behavior was investigated using two excitation wavelengths of 440 nm and 500 nm. Due to the wavelength-dependent absorbance spectrum and the presence of a surface adsorption layer that could be reduced using the shorter 440 nm wavelength, the ASE power dependence was strongly reliant on the excitation wavelength. The ASE state was achieved with a threshold energy density of ~200 µJ/cm2 under 440 nm excitation. Excitation at 500 nm, on the other hand, needed a higher threshold energy density of ~255 µJ/cm2. The ASE threshold carrier density, on the other hand, was expected to be ~4.5 × 1018 cm−3 for both excitations. A redshift of the ASE peak was detected as bandgap renormalization (BGR), and a BGR constant of ~5–7 × 10−9 eV cm was obtained.


Author(s):  
Na Li ◽  
Hong Zhang ◽  
Xing-Lu Cheng

Abstract We present a state-to-state dynamical calculation on the exchange reaction N+N2→N2+N and the non-reaction N+N2→N+N2 based on the potential energy surface published by Mankodi et al. The calculation is performed using the time-independent quantum reaction scattering program. The reactivity of both reaction processes is discussed by reaction properties of vibrational quantum numbers v=0-3 and rotational quantum numbers j=0-32 (such as cumulative reaction probability, state-to-state reaction probabilities, and cross sections of N exchange, state-to-state rate constants for both reactions). The threshold energy of the exchange reaction can decrease with the decrease of vibrational excitation or the increase of rotational excitation. By using the J-shifting approximation, rate constants are reported for both reactions. The comparison of the presented total rate constant of the N+N2 exchange reaction with the previous results shows that the quantum effect is not negligible at low temperatures. For the exchange reaction, the rate constant at 500K decreases by about 10 orders of magnitude when the vibrational level of N2 increases from 0 to 7, indicating that the rate constants are sensitive to the initial vibrational level of N2 at low temperatures. For non-reactive collisions, the rate constants have little effect on the initial ro-vibrational levels of N2 at low temperatures.


2021 ◽  
Vol 16 (12) ◽  
pp. P12027
Author(s):  
Z. Ahmadi Ganjeh ◽  
M. Eslami-Kalantari ◽  
M. Ebrahimi Loushab

Abstract The present study aimed to calculate the yields of DNA breaks and the variation of relative biological effectiveness (RBE) at different depths for protons using Geant4-DNA. For this purpose, an atomic model of DNA and a DNA damage classification matrix were used to calculate different DNA break yields for 62-MeV protons. As the reference radiation, the secondary electron spectrum produced by 60Co was evaluated. This helped to calculate the SSB and DSB yields. Moreover, RBE was found to be between 1.1 at the first point and 1.51 in the Bragg peak region. In this region, it was 37% greater than the 5-mm depth in the plateau region. Considering different threshold energies, the energy deposition at 10.79 eV had the most contribution to the total damage. As the results suggested, the depth dependence of RBE should be taken into account for proton therapy. It was also found that DNA break yields significantly depend on the threshold energy value.


2021 ◽  
Vol 119 (18) ◽  
pp. 182105
Author(s):  
Zhijian Guo ◽  
Xinmiao Zhu ◽  
Kaiyue Wang ◽  
Yufei Zhang ◽  
Yuming Tian ◽  
...  

2021 ◽  
Vol 38 (9) ◽  
pp. 092501
Author(s):  
Ding-Chang Zhang ◽  
Hui-Gan Cheng ◽  
Zhao-Qing Feng

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2746
Author(s):  
Minhee Kim ◽  
Se-Hee Lee

In an HVDC environment, space charge accumulated in polymeric insulators causes severe electric field distortion and degradation of breakdown strength. To analyze the breakdown characteristics, here, the space charge distribution was numerically evaluated using the bipolar charge transport (BCT) model, considering the temperature gradient inside the polymeric insulator. In particular, we proposed an electro-mechanical threshold energy condition, resulting in the modified molecular chain displacement model. The temperature gradient accelerates to reduce the breakdown strength with the polarity-reversal voltage, except during the harshest condition, when the temperature of the entire polymeric insulator was 70 °C. The energy imbalance inside the insulator caused by polarity-reversal voltage reduced the breakdown strength by 82%. Finally, this numerical analysis model can be used universally to predict the breakdown strength of polymeric insulators in various environments, and help in evaluating the electrical performance of polymeric insulators.


2021 ◽  
Author(s):  
Eilho Jung ◽  
Jin Cheol Park ◽  
Yu-Seong Seo ◽  
Ji-Hee Kim ◽  
Jungseek Hwang ◽  
...  

Abstract Although large exciton binding energies of typically 0.6–1.0 eV are observed for monolayer transition metal dichalcogenides (TMDs) owing to strong Coulomb interaction, multilayered TMDs yield relatively low exciton binding energies owing to increased dielectric screening. Recently, the ideal carrier-multiplication threshold energy of twice the bandgap has been realized in multilayered semiconducting 2H-MoTe2 with a conversion efficiency of 99%, which suggests strong Coulomb interaction. However, the origin of strong Coulomb interaction in multilayered 2H-MoTe2, including the exciton binding energy, has not been elucidated to date. In this study, unusually large exciton binding energy is observed through optical spectroscopy conducted on CVD-grown 2H-MoTe2. To extract exciton binding energy, the optical conductivity is fitted using the Lorentz model to describe the exciton peaks and the Tauc–Lorentz model to describe the indirect and direct bandgaps. The exciton binding energy of 4 nm thick multilayered 2H-MoTe2 is approximately 300 meV, which is unusually large by one order of magnitude when compared with other multilayered TMD semiconductors such as 2H-MoS2 or 2H-MoSe2. This finding is interpreted in terms of small exciton radius based on the 2D Rydberg model. The exciton radius of multilayered 2H-MoTe2 resembles that of monolayer 2H-MoTe2, whereas those of multilayered 2H-MoS2 and 2H-MoSe2 are large when compared with monolayer 2H-MoS2 and 2H-MoSe2. From the large exciton binding energy in multilayered 2H-MoTe2, it is expected to realize the future applications such as room-temperature and high-temperature polariton lasing.


Sign in / Sign up

Export Citation Format

Share Document