A study of secondary cosmic ray flux variation during the annular eclipse of 15 January 2010 at Rameswaram, India

2011 ◽  
Vol 35 (5) ◽  
pp. 223-229 ◽  
Author(s):  
Ankush Bhaskar ◽  
Avadhut Purohit ◽  
M. Hemalatha ◽  
Chintamani Pai ◽  
Anil Raghav ◽  
...  
1968 ◽  
Vol 46 (10) ◽  
pp. S1020-S1022 ◽  
Author(s):  
B. S. Chow ◽  
K. K. Wu ◽  
N. Simpson ◽  
V. D. Hopper

Analysis of emulsions exposed to cosmic radiation at atmospheric depths between 10 and 40 g/cm2 at λ = 47 °S geomagnetic on 11 December 1964 shows that there is little variation with altitude in proton flux in this altitude range. However, the total star production rate increases with increasing atmospheric depth but with a smaller slope than that measured by Geiger counter. Preliminary results obtained from exposures made in November 1965 at 8.5, 28.4, and 58 g/cm2 show that the values of proton flux at 8.5 and 58 g/cm2 are lower than that at 28.4 g/cm2. A study of the rate of production of stars at λ = 43° S and 9 g/cm2 over the period April 1962 to September 1966 shows some correlation with the ground-based neutron monitor count rate. The proton flux at the top of the atmosphere at latitude 47° S is estimated as 900 ± 100 protons/m2 sr s.


Pramana ◽  
2021 ◽  
Vol 95 (2) ◽  
Author(s):  
A Sen ◽  
S Chatterjee ◽  
S Roy ◽  
R Biswas ◽  
S Das ◽  
...  
Keyword(s):  

1957 ◽  
Vol 6 (3) ◽  
pp. 748-750 ◽  
Author(s):  
C. J. Waddington
Keyword(s):  

2000 ◽  
Vol 105 (A1) ◽  
pp. 9-17 ◽  
Author(s):  
Yuri I. Stozhkov ◽  
Peter E. Pokrevsky ◽  
Victor P. Okhlopkov

2008 ◽  
Author(s):  
S. Casanova ◽  
S. Gabici ◽  
F. A. Aharonian ◽  
K. Torii ◽  
Y. Fukui ◽  
...  

Author(s):  
L. J. Plug ◽  
J. C. Gosse ◽  
J. J. McIntosh ◽  
R. Bigley

2017 ◽  
Author(s):  
A.L Melott ◽  
B.C. Thomas ◽  
M. Kachelrieß ◽  
D.V. Semikoz ◽  
A.C. Overholt

ABSTRACTRecent 60Fe results have suggested that the estimated distances of supernovae in the last few million years should be reduced from ∼100 pc to ∼50 pc. Two events or series of events are suggested, one about 2.7 million years to 1.7 million years ago, and another may at 6.5 to 8.7 million years ago. We ask what effects such supernovae are expected to have on the terrestrial atmosphere and biota. Assuming that the Local Bubble was formed before the event being considered, and that the supernova and the Earth were both inside a weak, disordered magnetic field at that time, TeV-PeV cosmic rays at Earth will increase by a factor of a few hundred. Tropospheric ionization will increase proportionately, and the overall muon radiation load on terrestrial organisms will increase by a factor of ∼150. All return to pre-burst levels within 10kyr. In the case of an ordered magnetic field, effects depend strongly on the field orientation. The upper bound in this case is with a largely coherent field aligned along the line of sight to the supernova, in which case TeV-PeV cosmic ray flux increases are ∼104; in the case of a transverse field they are below current levels. We suggest a substantial increase in the extended effects of supernovae on Earth and in the “lethal distance” estimate; more work is needed. This paper is an explicit followup to Thomas et al. (2016). We also here provide more detail on the computational procedures used in both works.


Sign in / Sign up

Export Citation Format

Share Document