star production
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1519
Author(s):  
Robert E. Criss ◽  
Anne M. Hofmeister

Empirical laws proposed for the decline in star spin with time have heretofore been tested using ambiguous fitting models. We develop an analytical inverse model that uses histogram data to unequivocally determine the physical law governing how dwarf star spin depends on time (t) and mass (M). We analyze shapes of paired histograms of axial rotation period (П) and angular velocity (ω = 2π/П) to utilize the fact that a variable and its reciprocal are governed by the same physics. Copious data on open clusters are used to test the formula ∂ω/∂t ∝ − ωn where n is unrestricted, and thus covers diverse possibilities. Histogram conjugates for each of 15 clusters with 120 to 812 measurements provide n = 1.13 ± 0.19. Results are independent of initial spin rate, bin size, cluster parameters, and star mass. Notably, 11 large clusters with mostly M-types yield fits with n = 1.07 ± 0.12. Associations behave similarly. Only exponential decay (n = 1) explains the similar shapes of the conjugate histograms for the spin period and angular velocity, despite the asymmetric (inverse) relationship of these variables. This rate law is consistent with viscous dissipation. Forward modeling confirms that n is near unity and further shows that coeval formation of all stars in a cluster does not occur. We therefore explore a constant rate of star production, which is reasonable for tiny stars. Inverse models show that episodic production increases with mass, but is unimportant below ~0.55 MSun. We infer star and cluster ages, and find that star production becomes less regular with time, as interstellar gas and dust are progressively depleted. Our new analytical approach of extracting a physical law from conjugate histograms is general and widely applicable.


2020 ◽  
Vol 633 ◽  
pp. A165
Author(s):  
Ben Hastings ◽  
Chen Wang ◽  
Norbert Langer

Context. Be stars are rapidly rotating B main sequence stars that show line emission due to an outflowing disc. By studying the evolution of rotating single star models, we can assess their contribution to the observed Be star populations. Aims. We identify the main effects that cause single stars to approach critical rotation as functions of initial mass and metallicity, and predict the properties of populations of rotating single stars. Methods. We perform population synthesis with single-star models of initial masses ranging between 3 and 30 M⊙ and initial equatorial rotation velocities between 0 and 600 km s−1 at compositions representing the Milky Way and the Large and Small Magellanic Clouds. These models include efficient core–envelope coupling mediated by internal magnetic fields and correspond to the maximum efficiency of Be star production. We predict Be star fractions and the positions of fast-rotating stars in the colour–magnitude diagram. Results. We identify stellar wind mass-loss and the convective core mass fraction as the key parameters determining the time dependance of the stellar rotation rates. Using empirical distributions of initial rotational velocities, our single-star models can reproduce the trends observed in Be star fractions with mass and metallicity. However, they fail to produce a significant number of stars rotating very close to the critical velocity. We also find that rapidly rotating Be stars in the Magellanic Clouds should have significant surface nitrogen enrichment, which may be in conflict with abundance determinations of Be stars. Conclusions. Single-star evolution might explain the high number of Be stars if 70 to 80% of critical rotation would be sufficient to produce the Be phenomenon. However, even in this case, the unexplained presence of many Be stars far below the cluster turn-off indicates the importance of the binary channel for Be star production.


2019 ◽  
Vol 490 (3) ◽  
pp. 4307-4316 ◽  
Author(s):  
Keith A Olive ◽  
Elisabeth Vangioni

ABSTRACT Fluorine is massive enough that it is not considered to be a light (Z ≤ 5) element, yet compared to its near neighbours, C, N, O, and Ne, it is far underproduced in the course of stellar evolution, making its origin more complex. In fact, the abundance of fluorine is the lowest among all elements between Z = 5 and 21 and is roughly 3–4 orders of magnitude below that of C, N, O, and Ne. There are several plausible sources for F beyond standard stellar evolution. These include the production in the asymptotic giant branch phase (AGB) in intermediate-mass stars, production in Wolf–Rayet stars, and the production through neutrino spallation in supernovae. The latter, known as the ν-process, is an important source for 11B, and may contribute to the abundance of 7Li as well. We combine a simple model of Galactic chemical evolution with a standard Galactic cosmic ray nucleosynthesis model to treat self-consistently the evolution of the Li, Be, and B isotopes. We include massive star production of F, as well as contributions from AGB stars, and the ν-process. Given the uncertainties in neutrino energies in supernovae, we normalize the ν-process using the observed 11B/10B ratio as a constraint. As a consequence, we are able to determine the relative importance of each contribution to the F abundance. We find that although the ν-process dominates at early times (low metallicity), the present-day F abundance is found to originate primarily from AGB stars.


2012 ◽  
Vol 40 (5) ◽  
pp. e69-e70
Author(s):  
Elizabeth (Libby) Singhoffer ◽  
Catherine Tierney ◽  
Gregory Braswell ◽  
Bradley Beckham ◽  
Mark Slye ◽  
...  

2010 ◽  
Vol 54 (3-6) ◽  
pp. 62-64
Author(s):  
E.J.A. Meurs ◽  
C. Ó’ Maoiléidigh ◽  
L. Norci ◽  
G. Fennell

2004 ◽  
Vol 217 ◽  
pp. 64-69 ◽  
Author(s):  
John J. Feldmeier ◽  
Robin B. Ciardullo ◽  
George H. Jacoby ◽  
Patrick R. Durrell ◽  
J. Christopher Mihos

We present the results from multiple surveys for intracluster planetary nebulae (IPNe) in nearby galaxy clusters and groups. We find that in the case of clusters, our observations imply: 1) the amount of intracluster starlight is significant, up to 20% of the total starlight, 2) in Virgo, is elongated along our line of sight, and 3) is clustered on the sky, implying ongoing tidal stripping. In contrast, searches for IPNe in groups have found little or no intra-group population, implying there may be something in the cluster environment that significantly enhances intracluster star production. from high-resolution N-body simulations, we find that the IPNe should create observable features in position-velocity space, and that these features may eventually allow us to place limits on the dynamics of galaxy clusters.


2003 ◽  
Vol 209 ◽  
pp. 597-604 ◽  
Author(s):  
John J. Feldmeier

We review the progress of research on intracluster planetary nebulae (IPN). In the past five years, hundreds of IPN candidates have been detected in the Virgo and Fornax galaxy clusters and searches are also underway in poorer galaxy groups. From the observations to date, and applying the known properties of extragalactic planetary nebulae, the intracluster light in Virgo and Fornax: 1) is significant, at least 20% of the total cluster stellar luminosity, 2) is elongated in Virgo along our line of sight, and 3) may derive from lower-luminosity galaxies, consistent with some models of intracluster star production. A fraction of IPN candidates are not true IPN, but emission-line sources of very large observed equivalent width (≥ 200 Å). The most likely source for these contaminating objects are Lyman-α galaxies at z ≈ 3.1. Follow-up spectroscopy of the IPN candidates will be crucial to discriminate against high red-shift galaxies and to derive the velocity field of the intracluster stellar population.


Sign in / Sign up

Export Citation Format

Share Document