Long-term negative trend in cosmic ray flux

2000 ◽  
Vol 105 (A1) ◽  
pp. 9-17 ◽  
Author(s):  
Yuri I. Stozhkov ◽  
Peter E. Pokrevsky ◽  
Victor P. Okhlopkov
2020 ◽  
Vol 19 (5) ◽  
pp. 349-352 ◽  
Author(s):  
Adrian L. Melott ◽  
Brian C. Thomas ◽  
Brian D. Fields

AbstractMotivated by the occurrence of a moderately nearby supernova near the beginning of the Pleistocene, possibly as part of a long-term series beginning in the Miocene, we investigated whether nitrate rainout resulting from the atmospheric ionization of enhanced cosmic ray flux could have, through its fertilizer effect, initiated carbon dioxide drawdown. Such a drawdown could possibly reduce the greenhouse effect and induce the climate change that led to the Pleistocene glaciations. We estimate that the nitrogen flux enhancement onto the surface from an event at 50 pc would be of order 10%, probably too small for dramatic changes. We estimate deposition of iron (another potential fertilizer) and find it is also too small to be significant. There are also competing effects of opposite sign, including muon irradiation and reduction in photosynthetic yield caused by UV increase from stratospheric ozone layer depletion, leading to an ambiguous result. However, if the atmospheric ionization induces a large increase in the frequency of lightning, as argued elsewhere, the amount of nitrate synthesis should be much larger, dominate over the other effects and induce the climate change. More work needs to be done to clarify the effects on lightning frequency.


2003 ◽  
Vol 21 (4) ◽  
pp. 863-867 ◽  
Author(s):  
K. Mursula ◽  
I. G. Usoskin ◽  
G. A. Kovaltsov

Abstract. It was recently suggested (Lockwood, 2001) that the cosmic ray intensity in the neutron monitor energy range is linearly related to the coronal source flux, and can be reconstructed for the last 130 years using the long-term coronal flux estimated earlier. Moreover, Lockwood (2001) reconstructed the coronal flux for the last 500 years using a similar linear relation between the flux and the concentration of cosmogenic 10 Be isotopes in polar ice. Here we show that the applied linear relations are oversimplified and lead to unphysical results on long time scales. In particular, the cosmic ray intensity reconstructed by Lockwood (2001) for the last 130 years has a steep trend which is considerably larger than the trend estimated from observations during the last 65 years. Accordingly, the reconstructed cosmic ray intensity reaches or even exceeds the local interstellar cosmic ray flux around 1900. We argue that these unphysical results obtained when using linear relations are due to the oversimplified approach which does not take into account the complex and essentially nonlinear nature of long-term cosmic ray modulation in the heliosphere. We also compare the long-term cosmic ray intensity based on a linear treatment with the reconstruction based on a recent physical model which predicts a considerably lower cosmic ray intensity around 1900.Key words. Interplanetary physics (cosmic rays; heliopause and solar wind termination) – Geomagnetism and paleomagnetism (time variations, secular and long-term)


2020 ◽  
Vol 185 ◽  
pp. 103095 ◽  
Author(s):  
Luca Lanci ◽  
Simone Galeotti ◽  
Catia Grimani ◽  
Matthew Huber

Radiocarbon ◽  
1997 ◽  
Vol 39 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Yorgos Facorellis ◽  
Yannis Maniatis ◽  
Bernd Kromer

Systematic treatment of the data recorded by our guard counters and corrections introduced for meteorological factors has allowed observations on solar events clearly manifested in the readings. Examples are the solar flares of March 1989 and especially of June 1991, which caused a ca. 10% decrease in the cosmic radiation flux reaching the counters. A sinusoidal variation in the cosmic-ray flux with a period of one year is also clearly manifested in the data. The observation that the background in the 14C measurements depends on the intensity of the cosmic radiation has led to the use of monthly correlations for the determination of the best background value to be used in the age calculations. This reduces the error significantly. However, various factors such as random statistical fluctuations of the background measurements may affect the slope of the correlations and consequently the calculated age of the samples. Long-term observations of the relation between background values and coincidence counts have led to constraints in the slope of the correlation. A simple extension of the fitting procedure is explored, which maintains the physically meaningful range of the slopes, but is flexible to adjust for the seasonally varying contributions to the variations of the cosmic-ray flux.


Author(s):  
Anatoly V. Belov ◽  
Raisa T. Gushchina ◽  
Nataly Shlyk ◽  
Victor Yanke

The paper presents preliminary results of a comparison of long-term variations of the cosmic ray flux using data from the network of ground-based detectors with direct flux measurements on the PAMELA and AMS-02 magnetic spectrometers and a series of balloon stratospheric soundings. The analysis showed good agreement for the entire period of continuous ground-based monitoring of cosmic ray variations.


Solar Physics ◽  
2019 ◽  
Vol 294 (9) ◽  
Author(s):  
Krzysztof Iskra ◽  
Marek Siluszyk ◽  
Michael Alania ◽  
Witold Wozniak

Abstract In the present article, we analyze long-term changes in the intensity of galactic cosmic rays (GCRs) in different polarity epochs of the solar magnetic cycles from 1959 to 2014. Our purpose is to carry out a study of the delay time (DT) between the changes of the GCR intensity and various parameters characterizing the conditions in the heliosphere. We prove the existence of varying DTs between the changes of GCR intensity and the parameters characterizing solar activity, such as sunspot number and tilt angle. Based on our investigation, we obtained different DTs in epochs with different global solar magnetic field polarities. We conclude that the observed DTs are very important parameters for the study of GCR transport in the heliosphere.


Sign in / Sign up

Export Citation Format

Share Document