The roles of individual oxidants in secondary organic aerosol formation from Δ3-carene: 1. gas-phase chemical mechanism

2004 ◽  
Vol 38 (24) ◽  
pp. 4001-4012 ◽  
Author(s):  
Christopher J Colville ◽  
Robert J Griffin
2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2015 ◽  
Vol 15 (14) ◽  
pp. 8077-8100 ◽  
Author(s):  
K. P. Wyche ◽  
P. S. Monks ◽  
K. L. Smallbone ◽  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
...  

Abstract. Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.


2011 ◽  
Vol 11 (13) ◽  
pp. 6639-6662 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2013 ◽  
Vol 79 ◽  
pp. 553-560 ◽  
Author(s):  
Olaf Böge ◽  
Anke Mutzel ◽  
Yoshiteru Iinuma ◽  
Pasi Yli-Pirilä ◽  
Ariane Kahnt ◽  
...  

2010 ◽  
Vol 224 (7-8) ◽  
pp. 1059-1080 ◽  
Author(s):  
M. A. O Dwyer ◽  
T. J. Carey ◽  
R. M. Healy ◽  
J. C. Wenger ◽  
B. Picquet-Varrault ◽  
...  

2020 ◽  
Vol 240 ◽  
pp. 117740
Author(s):  
Lingshuo Meng ◽  
Cécile Coeur ◽  
Layal Fayad ◽  
Nicolas Houzel ◽  
Paul Genevray ◽  
...  

2013 ◽  
Vol 10 (3) ◽  
pp. 194 ◽  
Author(s):  
Haofei Zhang ◽  
Harshal M. Parikh ◽  
Jyoti Bapat ◽  
Ying-Hsuan Lin ◽  
Jason D. Surratt ◽  
...  

Environmental context Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry. Abstract Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx=NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability.


Sign in / Sign up

Export Citation Format

Share Document