phase chemical
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 67)

H-INDEX

46
(FIVE YEARS 5)

2021 ◽  
Vol 922 (2) ◽  
pp. 126
Author(s):  
Olli Sipilä ◽  
Kedron Silsbee ◽  
Paola Caselli

Abstract Nonthermal desorption of ices on interstellar grains is required to explain observations of molecules that are not synthesized efficiently in the gas phase in cold dense clouds. Perhaps the most important nonthermal desorption mechanism is one induced by cosmic rays (CRs), which, when passing through a grain, heat it transiently to a high temperature—the grain cools back to its original equilibrium temperature via the (partial) sublimation of the ice. Current cosmic ray induced desorption (CRD) models assume a fixed grain cooling time. In this work, we present a revised description of CRD in which the desorption efficiency depends dynamically on the ice content. We apply the revised desorption scheme to two-phase and three-phase chemical models in physical conditions corresponding to starless and prestellar cores, and to molecular cloud envelopes. We find that, inside starless and prestellar cores, introducing dynamic CRD can decrease gas-phase abundances by up to an order of magnitude in two-phase chemical models. In three-phase chemical models, our model produces results very similar to those of the static cooling scheme—when only one monolayer of ice is considered active. Ice abundances are generally insensitive to variations in the grain cooling time. Further improved CRD models need to take into account additional effects in the transient heating of the grains—introduced, for example, by the adoption of a spectrum of CR energies.


2021 ◽  
Author(s):  
Matthew L. Dawson ◽  
Christian Guzman ◽  
Jeffrey H. Curtis ◽  
Mario Acosta ◽  
Shupeng Zhu ◽  
...  

Abstract. A flexible treatment for gas- and aerosol-phase chemical processes has been developed for models of diverse scale, from box models up to global models. At the core of this novel framework is an "abstracted aerosol representation" that allows a given chemical mechanism to be solved in atmospheric models with different aerosol representations (e.g., sectional, modal, or particle-resolved). This is accomplished by treating aerosols as a collection of condensed phases that are implemented according to the aerosol representation of the host model. The framework also allows multiple chemical processes (e.g., gas- and aerosol-phase chemical reactions, emissions, deposition, photolysis, and mass-transfer) to be solved simultaneously as a single system. The flexibility of the model is achieved by (1) using an object-oriented design that facilitates extensibility to new types of chemical processes and to new ways of representing aerosol systems; (2) runtime model configuration using JSON input files that permits making changes to any part of the chemical mechanism without recompiling the model; this widely used, human-readable format allows entire gas- and aerosol-phase chemical mechanisms to be described with as much complexity as necessary; and (3) automated comprehensive testing that ensures stability of the code as new functionality is introduced. Together, these design choices enable users to build a customized multiphase mechanism, without having to handle pre-processors, solvers or compilers. Removing these hurdles makes this type of modeling accessible to a much wider community, including modelers, experimentalists, and educators. This new treatment compiles as a stand-alone library and has been deployed in the particle-resolved PartMC model and in the MONARCH chemical weather prediction system for use at regional and global scales. Results from the initial deployment to box models of different complexity and MONARCH will be discussed, along with future extension to more complex gas--aerosol systems, and the integration of GPU-based solvers.


2021 ◽  
pp. 68-131
Author(s):  
V.I. Gol’danskii ◽  
L.I. Trakhtenberg ◽  
V.N. Fleurov

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1992
Author(s):  
Andrew Harrison ◽  
Christina Tang

Performing multiple reaction steps in “one pot” to avoid the need to isolate intermediates is a promising approach for reducing solvent waste associated with liquid phase chemical processing. In this work, we incorporated gold nanoparticle catalysts into polymer nanoreactors via amphiphilic block copolymer directed self-assembly. With the polymer nanoreactors dispersed in water as the bulk solvent, we demonstrated the ability to facilitate two reaction steps in one pot with spontaneous precipitation of the product from the reaction mixture. Specifically, we achieved imide synthesis from 4-nitrophenol and benzaldehyde as a model reaction. The reaction occured in water at ambient conditions; the desired 4-benzylideneaminophenol product spontaneously precipitated from the reaction mixture while the nanoreactors remained stable in dispersion. A 65% isolated yield was achieved. In contrast, PEGylated gold nanoparticles and citrate stabilized gold nanoparticles precipitated with the reaction product, which would complicate both the isolation of the product as well as reuse of the catalyst. Thus, amphiphilic nanoreactors dispersed in water are a promising approach for reducing solvent waste associated with liquid phase chemical processing by using water as the bulk solvent, eliminating the need to isolate intermediates, achieving spontaneous product separation to facilitate the recycling of the reaction mixture, and simplifying the isolation of the desired product.


Sign in / Sign up

Export Citation Format

Share Document