scholarly journals Lazy controller synthesis for monotone transition systems and directed safety specifications

Automatica ◽  
2022 ◽  
Vol 135 ◽  
pp. 109993
Author(s):  
Elena Ivanova ◽  
Adnane Saoud ◽  
Antoine Girard
2019 ◽  
Author(s):  
Riyaz Bhat ◽  
John Chen ◽  
Rashmi Prasad ◽  
Srinivas Bangalore

2005 ◽  
Vol 38 (1) ◽  
pp. 367-372 ◽  
Author(s):  
L.H. Keel ◽  
S.P. Bhattacharyya

2014 ◽  
Vol 49 (1) ◽  
pp. 595-606 ◽  
Author(s):  
Udi Boker ◽  
Thomas A. Henzinger ◽  
Arjun Radhakrishna
Keyword(s):  

2021 ◽  
Vol 178 (1-2) ◽  
pp. 1-30
Author(s):  
Florian Bruse ◽  
Martin Lange ◽  
Etienne Lozes

Higher-Order Fixpoint Logic (HFL) is a modal specification language whose expressive power reaches far beyond that of Monadic Second-Order Logic, achieved through an incorporation of a typed λ-calculus into the modal μ-calculus. Its model checking problem on finite transition systems is decidable, albeit of high complexity, namely k-EXPTIME-complete for formulas that use functions of type order at most k < 0. In this paper we present a fragment with a presumably easier model checking problem. We show that so-called tail-recursive formulas of type order k can be model checked in (k − 1)-EXPSPACE, and also give matching lower bounds. This yields generic results for the complexity of bisimulation-invariant non-regular properties, as these can typically be defined in HFL.


Sign in / Sign up

Export Citation Format

Share Document