scholarly journals The type-2 peroxisomal targeting signal

2020 ◽  
Vol 1867 (2) ◽  
pp. 118609 ◽  
Author(s):  
Markus Kunze
Traffic ◽  
2013 ◽  
Vol 14 (12) ◽  
pp. 1290-1301 ◽  
Author(s):  
Fouzi El Magraoui ◽  
Rebecca Brinkmeier ◽  
Andreas Schrötter ◽  
Wolfgang Girzalsky ◽  
Thorsten Müller ◽  
...  

1996 ◽  
Vol 135 (1) ◽  
pp. 85-95 ◽  
Author(s):  
S J Gould ◽  
J E Kalish ◽  
J C Morrell ◽  
J Bjorkman ◽  
A J Urquhart ◽  
...  

Import of newly synthesized PTS1 proteins into the peroxisome requires the PTS1 receptor (Pex5p), a predominantly cytoplasmic protein that cycles between the cytoplasm and peroxisome. We have identified Pex13p, a novel integral peroxisomal membrane from both yeast and humans that binds the PTS1 receptor via a cytoplasmically oriented SH3 domain. Although only a small amount of Pex5p is bound to peroxisomes at steady state (< 5%), loss of Pex13p further reduces the amount of peroxisome-associated Pex5p by approximately 40-fold. Furthermore, loss of Pex13p eliminates import of peroxisomal matrix proteins that contain either the type-1 or type-2 peroxisomal targeting signal but does not affect targeting and insertion of integral peroxisomal membrane proteins. We conclude that Pex13p functions as a docking factor for the predominantly cytoplasmic PTS1 receptor.


2014 ◽  
Vol 34 (15) ◽  
pp. 2917-2928 ◽  
Author(s):  
T. A. Rodrigues ◽  
I. S. Alencastre ◽  
T. Francisco ◽  
P. Brites ◽  
M. Fransen ◽  
...  

2020 ◽  
Vol 167 (5) ◽  
pp. 429-432
Author(s):  
Tsuneo Imanaka ◽  
Kosuke Kawaguchi

Abstract Peroxisomal matrix proteins are imported into peroxisomes in a process mediated by peroxisomal targeting signal (PTS) type 1 and 2. The PTS2 proteins are imported into peroxisomes after binding with Pex7p. Niwa et al. (A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018;164:437–447) identified a novel Pex7p-binding protein in CHO cells and characterized the subcellular distribution and molecular properties of the human homologue, ‘P7BP2’. Interestingly, P7BP2 possesses PTS2 at the NH2 terminal and six putative AAA+ domains. Another group has suggested that the protein also possesses mitochondrial targeting signal at the NH2 terminal. In fact, the P7BP2 expressed in mammalian cells is targeted to both peroxisomes and mitochondria. The purified protein from Sf9 cells is a monomer and has a disc-like ring structure, suggesting that P7BP2 is a novel dynein-type AAA+ family protein. The protein expressed in insect cells exhibits ATPase activity. P7BP2 localizes to peroxisomes and mitochondria, and has a common function related to dynein-type ATPases in both organelles.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


1999 ◽  
Vol 112 (10) ◽  
pp. 1579-1590 ◽  
Author(s):  
C.C. Chang ◽  
S. South ◽  
D. Warren ◽  
J. Jones ◽  
A.B. Moser ◽  
...  

Zellweger syndrome and related disorders represent a group of lethal, genetically heterogeneous diseases. These peroxisome biogenesis disorders (PBDs) are characterized by defective peroxisomal matrix protein import and comprise at least 10 complementation groups. The genes defective in seven of these groups and more than 90% of PBD patients are now known. Here we examine the distribution of peroxisomal membrane proteins in fibroblasts from PBD patients representing the seven complementation groups for which the mutant gene is known. Peroxisomes were detected in all PBD cells, indicating that the ability to form a minimal peroxisomal structure is not blocked in these mutants. We also observed that peroxisome abundance was reduced fivefold in PBD cells that are defective in the PEX1, PEX5, PEX12, PEX6, PEX10, and PEX2 genes. These cell lines all display a defect in the import of proteins with the type-1 peroxisomal targeting signal (PTS1). In contrast, peroxisome abundance was unaffected in cells that are mutated in PEX7 and are defective only in the import of proteins with the type-2 peroxisomal targeting signal. Interestingly, a fivefold reduction in peroxisome abundance was also observed for cells lacking either of two PTS1-targeted peroxisomal beta-oxidation enzymes, acyl-CoA oxidase and 2-enoyl-CoA hydratase/D-3-hydroxyacyl-CoA dehydrogenase. These results indicate that reduced peroxisome abundance in PBD cells may be caused by their inability to import these PTS1-containing enzymes. Furthermore, the fact that peroxisome abundance is influenced by peroxisomal 105-oxidation activities suggests that there may be metabolic control of peroxisome abundance.


Sign in / Sign up

Export Citation Format

Share Document