protein targeting
Recently Published Documents


TOTAL DOCUMENTS

913
(FIVE YEARS 187)

H-INDEX

76
(FIVE YEARS 8)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 192
Author(s):  
Naroa Serna ◽  
Aïda Falgàs ◽  
Annabel García-León ◽  
Ugutz Unzueta ◽  
Yáiza Núñez ◽  
...  

The sustained release of small, tumor-targeted cytotoxic drugs is an unmet need in cancer therapies, which usually rely on punctual administration regimens of non-targeted drugs. Here, we have developed a novel concept of protein–drug nanoconjugates, which are packaged as slow-releasing chemically hybrid depots and sustain a prolonged secretion of the therapeutic agent. For this, we covalently attached hydrophobic molecules (including the antitumoral drug Monomethyl Auristatin E) to a protein targeting a tumoral cell surface marker abundant in several human neoplasias, namely the cytokine receptor CXCR4. By this, a controlled aggregation of the complex is achieved, resulting in mechanically stable protein–drug microparticles. These materials, which are mimetics of bacterial inclusion bodies and of mammalian secretory granules, allow the slow leakage of fully functional conjugates at the nanoscale, both in vitro and in vivo. Upon subcutaneous administration in a mouse model of human CXCR4+ lymphoma, the protein–drug depots release nanoconjugates for at least 10 days, which accumulate in the tumor with a potent antitumoral effect. The modification of scaffold cell-targeted proteins by hydrophobic drug conjugation is then shown as a novel transversal platform for the design of slow releasing protein–drug depots, with potential application in a broad spectrum of clinical settings.


PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009991
Author(s):  
Ipek Altinoglu ◽  
Guillaume Abriat ◽  
Alexis Carreaux ◽  
Lucía Torres-Sánchez ◽  
Mickaël Poidevin ◽  
...  

In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation.


2021 ◽  
Vol 23 (1) ◽  
pp. 281
Author(s):  
Hao-Hsuan Hsieh ◽  
Shu-ou Shan

Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization.


2021 ◽  
Author(s):  
Yi Sun ◽  
Shiva Bakhtiari ◽  
Melissa Valente-Paterno ◽  
Yanxia Wu ◽  
Christopher Law ◽  
...  

Translation is localized within cells to target proteins to their proper locations. We asked whether translation occurs on the chloroplast surface in Chlamydomonas and, if so, whether it is involved in co-translational protein targeting, aligned spatially with localized translation by the bacterial-type ribosomes within this organelle, or both. Our results reveal a domain of the chloroplast envelope which is bound by translating ribosomes. Purified chloroplasts retained ribosomes and mRNAs encoding two chloroplast proteins specifically on this translation domain, but not a mRNA encoding a cytoplasmic protein. Ribosomes clusters were seen on this domain by electron tomography. Activity of the chloroplast-bound ribosomes is supported by results of the ribopuromycylation and puromycin-release assays. Co-translational chloroplast protein import is supported by nascent polypeptide dependency of the ribosome-chloroplast associations. This cytoplasmic translation domain aligns localized translation by organellar bacterial-type ribosomes in the chloroplast. This juxtaposition the dual translation systems facilitates the targeting and assembly of the polypeptide products.


2021 ◽  
Vol 23 (1) ◽  
pp. 143
Author(s):  
Andrea Tirincsi ◽  
Mark Sicking ◽  
Drazena Hadzibeganovic ◽  
Sarah Haßdenteufel ◽  
Sven Lang

Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12710
Author(s):  
Hang Jie ◽  
Zhongxian Xu ◽  
Jian Gao ◽  
Feng Li ◽  
Yinglian Chen ◽  
...  

Background The formation of musk is a complex biophysical and biochemical process that change with the rut of male forest musk deer. We have reported that the mating status of male forest musk deer might result to the variations of chemical composition and microbiota of musk and its yields. Critical roles for microRNAs (miRNAs) of multi-tissues were profiled in our previous study; however, the role for miRNAs of the musk gland remains unclear in this species. Methods In this study, we used Illumina deep sequencing technology to sequence the small RNA transcriptome of unmated male (UM) and mated male (UM) of Chinese forest musk deer. Results We identified 1,652 known miRNAs and 45 novel miRNAs, of which there were 174 differentially expressed miRNAs between UM and MM. chi-miR-21-5p, ipu-miR-99b and bta-miR-26a were up-regulated in UM among the 10 most differentially expressed miRNAs. Functional enrichment of the target genes showed that monosaccharide biosynthetic process, protein targeting, cellular protein catabolic process enriched higher in MM. Meanwhile, structural molecule activity, secretion by cell, regulated exocytosis and circulatory system process enriched more in UM, hinting that the formation of musk in UM was mediated by target genes related to exocytosis. The miRNA-mRNA pairs such as miR-21: CHD7, miR143: HSD17B7, miR-141/200a: Noc2 might involve in musk gland development and musk secretion, which need to be verified in future study.


Author(s):  
Alexandros Karyolaimos ◽  
Jan-Willem de Gier

Main reasons to produce recombinant proteins in the periplasm of E. coli rather than in its cytoplasm are to -i- enable disulfide bond formation, -ii- facilitate protein isolation, -iii- control the nature of the N-terminus of the mature protein, and -iv- minimize exposure to cytoplasmic proteases. However, hampered protein targeting, translocation and folding as well as protein instability can all negatively affect periplasmic protein production yields. Strategies to enhance periplasmic protein production yields have focused on harmonizing secretory recombinant protein production rates with the capacity of the secretory apparatus by transcriptional and translational tuning, signal peptide selection and engineering, increasing the targeting, translocation and periplasmic folding capacity of the production host, preventing proteolysis, and, finally, the natural and engineered adaptation of the production host to periplasmic protein production. Here, we discuss these strategies using notable examples as a thread.


2021 ◽  
Author(s):  
Eden Yifrach ◽  
Duncan Holbrook-Smith ◽  
Jérôme Bürgi ◽  
Alaa Othman ◽  
Miriam Eisenstein ◽  
...  

AbstractSeventy years following the discovery of peroxisomes, their proteome remains undefined. Uncovering the complete peroxisomal proteome, the peroxi-ome, is crucial for understanding peroxisomal activities and cellular metabolism. We used high- content microscopy to uncover the peroxi-ome of the model eukaryote – Saccharomyces cerevisiae. This strategy enabled us to expand the known organellar proteome by ∼40% and paved the way for performing systematic, whole-organellar proteome assays. Coupled with targeted experiments this allowed us to discover new peroxisomal functions. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly-identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


2021 ◽  
Vol 22 (23) ◽  
pp. 13028
Author(s):  
Richard Zimmermann ◽  
Sven Lang ◽  
Monika Lerner ◽  
Friedrich Förster ◽  
Duy Nguyen ◽  
...  

Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.


Sign in / Sign up

Export Citation Format

Share Document