cytosolic receptor
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Mengqiao Li ◽  
Stefan Gaussmann ◽  
Bettina Tippler ◽  
Julia Ott ◽  
Grzegorz M Popowicz ◽  
...  

Human pathogenic trypanosomatid parasites harbor a unique form of peroxisomes termed glycosomes that are essential for parasite viability. We and others previously identified and characterized the essential Trypanosoma brucei ortholog TbPEX3, which is the membrane-docking factor for the cytosolic receptor PEX19 bound to the glycosomal membrane proteins. Knockdown of TbPEX3 expression leads to mislocalization of glycosomal membrane and matrix proteins, and subsequent cell death. As an early step in glycosome biogenesis, the PEX3–PEX19 interaction is an attractive drug target. We established a high-throughput assay for TbPEX3–TbPEX19 interaction and screened a compound library for small-molecule inhibitors. Hits from the screen were further validated using an in vitro ELISA assay. We identified three compounds, which exhibit significant trypanocidal activity but show no apparent toxicity to human cells. Furthermore, we show that these compounds lead to mislocalization of glycosomal proteins, which is toxic to the trypanosomes. Moreover, NMR-based experiments indicate that the inhibitors bind to PEX3. The inhibitors interfering with glycosomal biogenesis by targeting the TbPEX3–TbPEX19 interaction serve as starting points for further optimization and anti-trypanosomal drug development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Richa Sardana ◽  
Carolyn M Highland ◽  
Beth E Straight ◽  
Christopher F Chavez ◽  
J Christopher Fromme ◽  
...  

Protein glycosylation in the Golgi is a sequential process that requires proper distribution of transmembrane glycosyltransferase enzymes in the appropriate Golgi compartments. Some of the cytosolic machinery required for the steady-state localization of some Golgi enzymes are known but existing models do not explain how many of these enzymes are localized. Here, we uncover the role of an integral membrane protein in yeast, Erd1, as a key facilitator of Golgi glycosyltransferase recycling by directly interacting with both the Golgi enzymes and the cytosolic receptor, Vps74. Loss of Erd1 function results in mislocalization of Golgi enzymes to the vacuole/lysosome. We present evidence that Erd1 forms an integral part of the recycling machinery and ensures productive recycling of several early Golgi enzymes. Our work provides new insights on how the localization of Golgi glycosyltransferases is spatially and temporally regulated, and is finely tuned to the cues of Golgi maturation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuguo Hou ◽  
Derui Liu ◽  
Shijia Huang ◽  
Dexian Luo ◽  
Zunyong Liu ◽  
...  

AbstractSessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that the Arabidopsis receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) from Brassicaceae plants as well as proteins present in fungal Fusarium spp. and bacterial Comamonadaceae, and elicits various immune responses. SCOOP signature peptides trigger immune responses and altered root development in a MIK2-dependent manner with a sub-nanomolar sensitivity. SCOOP12 directly binds to the extracellular leucine-rich repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identifies a plant receptor that bears a dual role in sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.


2021 ◽  
Vol 2 (1) ◽  
pp. 57-59
Author(s):  
Brianne Navetta-Modrov ◽  
Berhane Ghebrehiwet ◽  
Qingping Yao

Abstract Nucleotide-binding oligomerization domain containing protein 2 (NOD2) is a cytosolic receptor. Both NOD2 and vasoactive intestinal peptide (VIP) are critical in regulation of immune and inflammatory response. Yao syndrome (YAOS, OMIM 617321) is an autoinflammatory disease associated with specified NOD2 mutations. Herein, we report a well-studied case of YAOS masquerading as mast cell disorder and neuroendocrine tumors to support the involvement of VIP in YAOS. For the first time, this case study suggests a potential relationship between NOD2 and VIP. This could provide a novel avenue for mechanistic study of NOD2-associated disease.


2021 ◽  
Author(s):  
Shuguo Hou ◽  
Derui Liu ◽  
Shijia Huang ◽  
Dexian Luo ◽  
Zunyong Liu ◽  
...  

ABSTRACTSessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that the Arabidopsis receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE RICH ENDOGENOUS PEPTIDEs (SCOOPs) from plants as well as proteins present in fungal Fusarium spp. and bacterial Comamonadaceae, and elicits potent immune responses. SCOOP signature peptides trigger diverse immune and physiological responses in a MIK2-dependent manner with a sub-nanomolar sensitivity and directly bind to the extracellular leucine rich-repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identified a unique plant receptor that bears a dual recognition capability sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jiayu Wu ◽  
Johan W. M. Heemskerk ◽  
Constance C. F. M. J. Baaten

The activities of adhesion and signaling receptors in platelets are controlled by several mechanisms. An important way of regulation is provided by proteolytic cleavage of several of these receptors, leading to either a gain or a loss of platelet function. The proteases involved are of different origins and types: (i) present as precursor in plasma, (ii) secreted into the plasma by activated platelets or other blood cells, or (iii) intracellularly activated and cleaving cytosolic receptor domains. We provide a comprehensive overview of the proteases acting on the platelet membrane. We describe how these are activated, which are their target proteins, and how their proteolytic activity modulates platelet functions. The review focuses on coagulation-related proteases, plasmin, matrix metalloproteinases, ADAM(TS) isoforms, cathepsins, caspases, and calpains. We also describe how the proteolytic activities are determined by different platelet populations in a thrombus and conversely how proteolysis contributes to the formation of such populations.


Genome ◽  
2020 ◽  
pp. 1-19
Author(s):  
C. Pridie ◽  
Andrew J. Simmonds

Peroxisomes are organelles in eukaryotic cells responsible for processing several types of lipids and management of reactive oxygen species. A conserved family of peroxisome biogenesis (Peroxin, Pex) genes encode proteins essential to peroxisome biogenesis or function. In yeast and mammals, PEROXIN7 (PEX7) acts as a cytosolic receptor protein that targets enzymes containing a peroxisome targeting signal 2 (PTS2) motif for peroxisome matrix import. The PTS2 motif is not present in the Drosophila melanogaster homologs of these enzymes. However, the fly genome contains a Pex7 gene (CG6486) that is very similar to yeast and human PEX7. We find that Pex7 is expressed in tissue-specific patterns analogous to differentiating neuroblasts in D. melanogaster embryos. This is correlated with a requirement for Pex7 in this cell lineage as targeted somatic Pex7 knockout in embryonic neuroblasts reduced survival. We also found that Pex7 over-expression in the same cell lineages caused lethality during the larval stage. Targeted somatic over-expression of a Pex7 transgene in neuroblasts of Pex7 homozygous null mutants resulted in a semi-lethal phenotype similar to targeted Pex7 knockout. These findings suggest that D. melanogaster has tissue-specific requirements for Pex7 during embryo development.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 22 ◽  
Author(s):  
Charles Nunes Boeno ◽  
Mauro Valentino Paloschi ◽  
Jéssica Amaral Lopes ◽  
Weverson Luciano Pires ◽  
Sulamita da Silva Setúbal ◽  
...  

Background: Snake venom phospholipases A2 (PLA2s) have hemolytic, anticoagulant, myotoxic, oedematogenic, bactericidal, and inflammatory actions. BthTX-I, a Lys49-PLA2 isolated from Bothrops jararacussu venom, is an example of Lys49-PLA2 that presents such actions. NLRP3 is a cytosolic receptor from the NLR family responsible for inflammasome activation via caspase-1 activation and IL-1β liberation. The study of NLRs that recognize tissue damage and activate the inflammasome is relevant in envenomation. Methods: Male mice (18–20 g) received an intramuscular injection of BthTX-I or sterile saline. The serum was collected for creatine-kinase (CK), lactate dehydrogenase (LDH), and interleukin-1β (IL-1β) assays, and muscle was removed for inflammasome activation immunoblotting and qRT-PCR expression for nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 receptor (NLRP3) inflammasome components. Results: BthTX-I-induced inflammation and myonecrosis, shown by intravital microscope, and LDH and CK release, respectively. Mouse treatment with A438079, a P2X7 receptor antagonist, did not modify these effects. BthTX-I induced inflammasome activation in muscle, but P2X7R participation in this effect was not observed. Conclusion: Together, the results showed for the first time that BthTX-I in gastrocnemius muscle induces inflammation and consequently, inflammasome activation via NLRP3 with caspase-1 activation and IL-1β liberation.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Simon A. M. Underhill ◽  
Robert C. Shields ◽  
Justin R. Kaspar ◽  
Momin Haider ◽  
Robert A. Burne ◽  
...  

ABSTRACTEntry into genetic competence in streptococci is controlled by ComX, an alternative sigma factor for genes that enable the import of exogenous DNA. InStreptococcus mutans, the immediate activator ofcomXis the ComRS quorum system. ComS is the precursor of XIP, a seven-residue peptide that is imported into the cell and interacts with the cytosolic receptor ComR to form a transcriptional activator for bothcomXandcomS. Although intercellular quorum signaling by ComRS has been demonstrated, observations of bimodal expression ofcomXsuggest thatcomRSmay also function as an intracellular feedback loop, activatingcomXwithout export or detection of extracellular XIP. Here we used microfluidic and single-cell methods to test whether ComRS induction ofcomXrequires extracellular XIP or ComS. We found that individualcomS-overexpressing cells activate their owncomX, independently of the rate at which their growth medium is replaced. However, in the absence of lysis they do not activatecomS-deficient mutants growing in coculture. We also found that induction ofcomRandcomSgenes introduced intoEscherichia colicells leads to activation of acomXreporter. Therefore, ComRS control ofcomXdoes not require either the import or extracellular accumulation of ComS or XIP or specific processing of ComS to XIP. We also found that endogenously and exogenously produced ComS and XIP have inequivalent effects oncomXactivation. These data are fully consistent with identification of intracellular positive feedback incomStranscription as the origin of bimodalcomXexpression inS. mutans.IMPORTANCEThe ComRS system can function as a quorum sensing trigger for genetic competence inS. mutans. The signal peptide XIP, which is derived from the precursor ComS, enters the cell and interacts with the Rgg-type cytosolic receptor ComR to activatecomX, which encodes the alternative sigma factor for the late competence genes. Previous studies have demonstrated intercellular signaling via ComRS, although release of the ComS or XIP peptide to the extracellular medium appears to require lysis of the producing cells. Here we tested the complementary hypothesis that ComRS can drivecomXthrough a purely intracellular mechanism that does not depend on extracellular accumulation or import of ComS or XIP. By combining single-cell, coculture, and microfluidic approaches, we demonstrated that endogenously produced ComS can enable ComRS to activatecomXwithout requiring processing, export, or import. These data provide insight into intracellular mechanisms that generate noise and heterogeneity inS. mutanscompetence.


2018 ◽  
Vol 115 (14) ◽  
pp. E3163-E3172 ◽  
Author(s):  
Kim L. Gonzalez ◽  
Sarah E. Ratzel ◽  
Kendall H. Burks ◽  
Charles H. Danan ◽  
Jeanne M. Wages ◽  
...  

Peroxisomes are eukaryotic organelles critical for plant and human development because they house essential metabolic functions, such as fatty acid β-oxidation. The interacting ATPases PEX1 and PEX6 contribute to peroxisome function by recycling PEX5, a cytosolic receptor needed to import proteins targeted to the peroxisomal matrix. Arabidopsis pex6 mutants exhibit low PEX5 levels and defects in peroxisomal matrix protein import, oil body utilization, peroxisomal metabolism, and seedling growth. These defects are hypothesized to stem from impaired PEX5 retrotranslocation leading to PEX5 polyubiquitination and consequent degradation of PEX5 via the proteasome or of the entire organelle via autophagy. We recovered a pex1 missense mutation in a screen for second-site suppressors that restore growth to the pex6-1 mutant. Surprisingly, this pex1-1 mutation ameliorated the metabolic and physiological defects of pex6-1 without restoring PEX5 levels. Similarly, preventing autophagy by introducing an atg7-null allele partially rescued pex6-1 physiological defects without restoring PEX5 levels. atg7 synergistically improved matrix protein import in pex1-1 pex6-1, implying that pex1-1 improves peroxisome function in pex6-1 without impeding autophagy of peroxisomes (i.e., pexophagy). pex1-1 differentially improved peroxisome function in various pex6 alleles but worsened the physiological and molecular defects of a pex26 mutant, which is defective in the tether anchoring the PEX1–PEX6 hexamer to the peroxisome. Our results support the hypothesis that, beyond PEX5 recycling, PEX1 and PEX6 have additional functions in peroxisome homeostasis and perhaps in oil body utilization.


Sign in / Sign up

Export Citation Format

Share Document