scholarly journals Neural signatures of experience-based improvements in deterministic decision-making

2016 ◽  
Vol 315 ◽  
pp. 51-65 ◽  
Author(s):  
Joshua J. Tremel ◽  
Patryk A. Laurent ◽  
David A. Wolk ◽  
Mark E. Wheeler ◽  
Julie A. Fiez
2016 ◽  
Author(s):  
Miriam C Klein-Flügge ◽  
Steven W Kennerley ◽  
Karl Friston ◽  
Sven Bestmann

AbstractIntegrating costs and benefits is crucial for optimal decision-making. While much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human functional magnetic resonance imaging during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area (SMA) and the caudal portion of dorsal anterior cingulate cortex (dACC) encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modelled effort-discounted subjective values using a novel behavioural model. This revealed that the same network of regions involving dACC and SMA encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in SMA and ventro-medial PFC (vmPFC) correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not vmPFC as typically reported for outcome-based choice. Furthermore, distinct frontal circuits ‘drive’ behaviour towards reward-maximization and effort-minimization.Significance StatementThe neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because energetic requirements play an integral role in our day-to-day choices and instrumental behaviour, and a diminished willingness to exert effort is a characteristic feature of a range of neurological disorders. We use a new behavioural characterization of how humans trade-off reward-maximization with effort-minimization to examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. We find the critical neural signature of decision-making, a signal that reflects the comparison of value between choice options, in human cingulate cortex, whereas two distinct brain circuits ‘drive’ behaviour towards reward-maximization or effort-minimization.


Cognition ◽  
2016 ◽  
Vol 157 ◽  
pp. 77-99 ◽  
Author(s):  
Hanna B. Fechner ◽  
Thorsten Pachur ◽  
Lael J. Schooler ◽  
Katja Mehlhorn ◽  
Ceren Battal ◽  
...  

2016 ◽  
Vol 36 (43) ◽  
pp. 10935-10948 ◽  
Author(s):  
A. M. F. Reiter ◽  
L. Deserno ◽  
T. Kallert ◽  
H.-J. Heinze ◽  
A. Heinz ◽  
...  

2016 ◽  
Vol 28 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Patrick H. Khader ◽  
Thorsten Pachur ◽  
Lilian A. E. Weber ◽  
Kerstin Jost

Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136–143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.


2018 ◽  
Vol 13 (3) ◽  
pp. 685-698 ◽  
Author(s):  
Chunliang Feng ◽  
Xue Feng ◽  
Li Wang ◽  
Lili Wang ◽  
Ruolei Gu ◽  
...  

2011 ◽  
Vol 106 (5) ◽  
pp. 2383-2398 ◽  
Author(s):  
Taosheng Liu ◽  
Timothy J. Pleskac

Sequential sampling models provide a useful framework for understanding human decision making. A key component of these models is an evidence accumulation process in which information is accrued over time to a threshold, at which point a choice is made. Previous neurophysiological studies on perceptual decision making have suggested accumulation occurs only in sensorimotor areas involved in making the action for the choice. Here we investigated the neural correlates of evidence accumulation in the human brain using functional magnetic resonance imaging (fMRI) while manipulating the quality of sensory evidence, the response modality, and the foreknowledge of the response modality. We trained subjects to perform a random dot motion direction discrimination task by either moving their eyes or pressing buttons to make their responses. In addition, they were cued about the response modality either in advance of the stimulus or after a delay. We isolated fMRI responses for perceptual decisions in both independently defined sensorimotor areas and task-defined nonsensorimotor areas. We found neural signatures of evidence accumulation, a higher fMRI response on low coherence trials than high coherence trials, primarily in saccade-related sensorimotor areas (frontal eye field and intraparietal sulcus) and nonsensorimotor areas in anterior insula and inferior frontal sulcus. Critically, such neural signatures did not depend on response modality or foreknowledge. These results help establish human brain areas involved in evidence accumulation and suggest that the neural mechanism for evidence accumulation is not specific to effectors. Instead, the neural system might accumulate evidence for particular stimulus features relevant to a perceptual task.


2018 ◽  
Author(s):  
Alexander Genauck ◽  
Caroline Matthis ◽  
Milan Andrejevic ◽  
Lukas Ballon ◽  
Francesca Chiarello ◽  
...  

Background: Just as substance use disorders (SUDs), gambling disorder (GD) is characterized by an increase in cue-dependent decision-making (similar to Pavlovian-to-instrumental transfer, PIT). PIT, as studied in SUDs and healthy subjects, is associated with altered communication between Nucleus Accumbens (NAcc), amygdala, and orbitofrontal cortex (OFC). These neural differences are, however, poorly understood. For example, it is unclear whether they are due to the physiological effects of substance abuse, or rather related to learning processes and/or other etiological factors like innate traits associated with addiction. We have thus investigated whether network activation patterns during a PIT task are also altered in GD, an addictive disorder not involving substance abuse. We have specifically studied which neural PIT patterns were best at distinguishing GD from HC subjects, all to improve our understanding of the neural signatures of GD and of addiction-related PIT in general. Methods: 30 GD and 30 HC subjects completed an affective decision-making task in a functional magnetic resonance imaging (fMRI) scanner. Gambling associated and other emotional cues were shown in the background during the task, allowing us to record multivariate neural PIT signatures focusing on a network of NAcc, amygdala and OFC. We built and tested a classifier based on these multivariate neural PIT signatures using cross-validated elastic net regression. Results and Discussion: As expected, GD subjects showed stronger PIT than HC subjects because they showed stronger increase in gamble acceptance when gambling cues were presented in the background. Classification based on neural PIT signatures yielded a significant AUC-ROC (0.70, p = 0.013). When inspecting the features of the classifier, we observed that GD showed stronger PIT-related functional connectivity between NAcc and amygdala elicited by gambling background cues, as well as between amygdala and OFC elicited by negative and positive cues. Conclusion: We propose that HC and GD subjects are distinguishable by PIT-related neural signatures including amygdala-NAcc-OFC functional connectivity. Our findings suggest that neural PIT alterations in addictive disorders might not depend on the physiological effect of a substance of abuse, but on related learning processes or even innate neural traits, also found in behavioral addictions.


Sign in / Sign up

Export Citation Format

Share Document