Reprint of “Glutathione Peroxidase Activity in Selenium-Deficient Rat Liver”

2012 ◽  
Vol 425 (3) ◽  
pp. 503-509 ◽  
Author(s):  
Richard A. Lawrence
1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


2006 ◽  
Vol 50 (3) ◽  
pp. 305-312 ◽  
Author(s):  
Alessandra Bordoni ◽  
Luciana Cabrini ◽  
Mario Marchetti ◽  
Francesca Danesi ◽  
Davide Bochicchio ◽  
...  

1969 ◽  
Vol 115 (3) ◽  
pp. 449-456 ◽  
Author(s):  
R E Pinto ◽  
W Bartley

1. Glutathione peroxidase activity in the livers of sham-operated female rats was about 60% higher than in similarly treated male rats. The value in the ovariectomized female was about the same as that in the castrated or sham-operated male. 2. Glutathione peroxidase activity changed during the oestrous cycle. The highest value was in oestrus, and was about 50% higher than the lowest activity, which was found in dioestrus. The activity in proestrus and in metoestrus was respectively about 20 and 30% higher than in dioestrus. 3. In the pregnant female 1 or 2 days before term, glutathione peroxidase activity was about 20% higher than that in the female in oestrus. 4. Subcutaneous implants of both oestra-diol and progesterone in the gonadectomized rats increased the glutathione peroxidase activity approximately to the values found in the female at oestrus. 5. The rate of aerobic oxidation of GSH in the female rat liver was about 80% higher than in the male and about 110% higher than in the gonadectomized rats. Treatment of gonadectomized rats with subcutaneous implants of oestradiol and of progesterone increased the rate of oxidation of GSH by about 100%. 6. In the presence of azide the rate of GSH oxidation in the male and in the female was respectively about 3·5- and 2·1-fold that in the absence of azide. In castrated or ovariectomized rats the increase due to the presence of azide was about 2·4-fold. In the gonadectomized rats treated with oestradiol or progesterone the rate of GSH oxidation in the presence of azide was about 2·2-fold that in its absence. 7. The rate of lipid peroxidation in female was 15–30-fold that in male or in gonadectomized rats. Treatment of the gonadectomized rats with oestradiol or with progesterone increased the rate of lipid peroxidation up to values that were even higher than in the female. In the presence of GSH the formation of malonaldehyde from peroxides was virtually eliminated. 8. The results suggest that the sex-linked differences in glutathione peroxidase activity, in the rate of GSH oxidation and in the rate of lipid peroxidation are due to the female sex hormones. 9. It is suggested that both the catalase activity and the rate of hydrogen peroxide formation are higher in the male than in the female. 10. Sex-linked changes in glutathione peroxidase, in the rate of GSH oxidation and in the rate of lipid peroxide formation are discussed in relation to the metabolism of oestrogens in the liver and also to the possible nature of those sex-linked changes.


1984 ◽  
Vol 224 (1) ◽  
pp. 335-338 ◽  
Author(s):  
S V Singh ◽  
Y C Awasthi

Two types of 25 000-Mr subunits are present in rat lung glutathione S-transferase I (pI 8.8). These subunits, designated Yc and Yc', are immunologically and functionally distinct from each other. The homodimers YcYc (pI 10.4) and Yc'Yc' (pI 7.6) obtained by hybridization in vitro of the two subunits of glutathione S-transferase I (pI 8.8) were isolated and characterized. Results of these studies indicate that only the Yc subunits express glutathione peroxidase activity and cross-react with the antibodies raised against glutathione S-transferase B (YaYc) or rat liver. The Yc' subunits do not express glutathione peroxidase activity and do not cross-react with the antibodies raised against glutathione S-transferase B of rat liver. The amino acid compositions of these two subunits are also different. These two subunits can also be separated by the two-dimensional gel electrophoresis of glutathione S-transferase I (pI 8.8) of rat lung.


Sign in / Sign up

Export Citation Format

Share Document