Solution NMR structure and ligand identification of human Gas7 SH3 domain reveal a typical SH3 fold but a non-canonical ligand-binding mode

2019 ◽  
Vol 516 (4) ◽  
pp. 1190-1195
Author(s):  
Yao Nie ◽  
Jiang Zhu ◽  
Theresa A. Ramelot ◽  
Michael A. Kennedy ◽  
Maili Liu ◽  
...  
2017 ◽  
Vol 129 (25) ◽  
pp. 7208-7212 ◽  
Author(s):  
Julia Wirmer-Bartoschek ◽  
Lars Erik Bendel ◽  
Hendrik R. A. Jonker ◽  
J. Tassilo Grün ◽  
Francesco Papi ◽  
...  

2017 ◽  
Vol 56 (25) ◽  
pp. 7102-7106 ◽  
Author(s):  
Julia Wirmer-Bartoschek ◽  
Lars Erik Bendel ◽  
Hendrik R. A. Jonker ◽  
J. Tassilo Grün ◽  
Francesco Papi ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Orsolya Tőke ◽  
Kitti Koprivanacz ◽  
László Radnai ◽  
Balázs Merő ◽  
Tünde Juhász ◽  
...  

SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.


2005 ◽  
Vol 59 (2) ◽  
pp. 347-355 ◽  
Author(s):  
Albane le Maire ◽  
Thomas Weber ◽  
Sophie Saunier ◽  
Isabelle Broutin ◽  
Corinne Antignac ◽  
...  

2017 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


2018 ◽  
Author(s):  
Samuel Gill ◽  
Nathan M. Lim ◽  
Patrick Grinaway ◽  
Ariën S. Rustenburg ◽  
Josh Fass ◽  
...  

<div>Accurately predicting protein-ligand binding is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation timescales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes.</div><div><br></div><div>In this technique the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over two orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step towards applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding Modes of Ligands using Enhanced Sampling (BLUES) package which is freely available on GitHub.</div>


2021 ◽  
pp. 166977
Author(s):  
Colleen Kelly ◽  
Nicola Pace ◽  
Matthew Gage ◽  
Mark Pfuhl

ChemMedChem ◽  
2006 ◽  
Vol 1 (11) ◽  
pp. 1197-1199 ◽  
Author(s):  
Srisunder Subramaniam ◽  
Stephen L. Briggs ◽  
Allen D. Kline

2012 ◽  
Vol 287 (45) ◽  
pp. 38231-38243 ◽  
Author(s):  
Hannah V. McCue ◽  
Pryank Patel ◽  
Andrew P. Herbert ◽  
Lu-Yun Lian ◽  
Robert D. Burgoyne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document