On the catalytic role of the active site residue E121 of E. coli l-aspartate oxidase

Biochimie ◽  
2010 ◽  
Vol 92 (10) ◽  
pp. 1335-1342 ◽  
Author(s):  
Gabriella Tedeschi ◽  
Simona Nonnis ◽  
Bice Strumbo ◽  
Gabriele Cruciani ◽  
Emanuele Carosati ◽  
...  
Biochemistry ◽  
2005 ◽  
Vol 44 (3) ◽  
pp. 893-904 ◽  
Author(s):  
Mahmoud Ghanem ◽  
Giovanni Gadda

Biochemistry ◽  
1991 ◽  
Vol 30 (5) ◽  
pp. 1432-1440 ◽  
Author(s):  
William A. Beard ◽  
James R. Appleman ◽  
Shaoming Huang ◽  
Tavner J. Delcamp ◽  
James H. Freisheim ◽  
...  

2013 ◽  
Vol 97 (24) ◽  
pp. 10399-10411 ◽  
Author(s):  
Hao Zhou ◽  
Yuanyuan Qu ◽  
Chunlei Kong ◽  
E. Shen ◽  
Jingwei Wang ◽  
...  

1995 ◽  
Vol 73 (5-6) ◽  
pp. 219-222
Author(s):  
J. W. Anderson

Histidine-containing protein (HPr) is a central component of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). This brief review covers recent structure–function studies on the active center of this protein: the role of the active center residues in phosphotransfer; the residues contributing to the phosphohydrolysis properties of HPr; and the contribution residues in HPr make to the pKaof the transiently phosphorylated active-site residue, His 15. As well, the potential for HPr to be used as a model protein for studying problems not directly associated with its function in the PTS is discussed.Key words: phosphoenolpyruvate: sugar phosphotransferase system, histidine-containing protein, active center, structure–function, model protein.


1997 ◽  
Vol 78 (04) ◽  
pp. 1209-1214 ◽  
Author(s):  
Mitsuhiro Uchiba ◽  
Kenji Okajima ◽  
Kazunori Murakami ◽  
Hiroaki Okabe ◽  
Shosuke Okamoto ◽  
...  

SummaryThe acute respiratory distress syndrome (ARDS) is a serious complication of sepsis. To evaluate the role of the coagulation system in the pathogenesis of ARDS in sepsis, we examined the effects of the administration of a synthetic plasma kallikrein specific inhibitor (PKSI) and of active-site blocked factor VIIa (DEGR-VIIa) on the pulmonary vascular injury induced by E. coli endotoxin (ET) in rats. Administration of PKSI prevented the pulmonary vascular injury induced by ET as well as pulmonary histological changes in animals administered ET, but it did not affect the intravascular coagulation. The opposite effect was seen with DEGR-VIIa, which prevented the intravascular coagulation but not the pulmonary vascular injury. PKSI did not inhibit the activation of the complement system induced by ET leading to the activation of neutrophils.Findings suggest that PKSI may prevent the pulmonary vascular injury induced by ET by inhibiting kallikrein, which activates the neutrophils. The intrinsic pathway of coagulation may be more important than the extrinsic pathway in the pulmonary vascular injury produced byET.


Science ◽  
1987 ◽  
Vol 237 (4817) ◽  
pp. 909-913 ◽  
Author(s):  
C. Craik ◽  
S Roczniak ◽  
C Largman ◽  
W. Rutter

Sign in / Sign up

Export Citation Format

Share Document