extrinsic pathway
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 56)

H-INDEX

48
(FIVE YEARS 5)

Author(s):  
Jamie Z. Roberts ◽  
Nyree Crawford ◽  
Daniel B. Longley

AbstractCell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260366
Author(s):  
Jason Chen ◽  
Scott L. Diamond

A highly reduced extrinsic pathway coagulation model (8 ODEs) under flow considered a thin 15-micron platelet layer where transport limitations were largely negligible (except for fibrinogen) and where cofactors (FVIIa, FV, FVIII) were not rate-limiting. By including thrombin feedback activation of FXI and the antithrombin-I activities of fibrin, the model accurately simulated measured fibrin formation and thrombin fluxes. Using this reduced model, we conducted 10,000 Monte Carlo (MC) simulations for ±50% variation of 5 plasma zymogens and 2 fibrin binding sites for thrombin. A sensitivity analysis of zymogen concentrations indicated that FIX activity most influenced thrombin generation, a result expected from hemophilia A and B. Averaging all MC simulations confirmed both the mean and standard deviation of measured fibrin generation on 1 tissue factor (TF) molecule per μm2. Across all simulations, free thrombin in the layer ranged from 20 to 300 nM (mean: 50 nM). The top 2% of simulations that produced maximal fibrin were dominated by conditions with low antithrombin-I activity (decreased weak and strong sites) and high FIX concentration. In contrast, the bottom 2% of simulations that produced minimal fibrin were dominated by low FIX and FX. The percent reduction of fibrin by an ideal FXIa inhibitor (FXI = 0) ranged from 71% fibrin reduction in the top 2% of MC simulations to only 34% fibrin reduction in the bottom 2% of MC simulations. Thus, the antithrombotic potency of FXIa inhibitors may vary depending on normal ranges of zymogen concentrations. This reduced model allowed efficient multivariable sensitivity analysis.


Author(s):  
Michal Błażej Ponczek

Kininogens are multidomain glycoproteins found in the blood of most vertebrates. They are important in the blood coagulation cascade pathways - in intrinsic pathway activation leading to thrombin generation partially independently from tissue factor dependent extrinsic pathway, connecting blood coagulation with the kallikrein-kinin system. Nothing is known about the shape on atomic level therefore the endeavor to obtain the good-quality spatial structure of kininogens is important for a better understanding of their role in disease and treatment. Application of cryo-EM is important for solving the spatial structure of kininogens, drawing new frontiers in understanding the function and opening new pathways for drug development.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1995
Author(s):  
Georgios N. Katsaras ◽  
Rozeta Sokou ◽  
Andreas G. Tsantes ◽  
Aikaterini Konstantinidi ◽  
Dimitra Gialamprinou ◽  
...  

Background: Although respiratory distress syndrome (RDS) constitutes a postnatal risk factor for bleeding and thromboembolic events in neonates, few studies have addressed this issue. We aimed to evaluate the hemostatic profile of neonates with RDS using rotational thromboelastometry (ROTEM). Methods: An observational study was conducted from November 2018 to November 2020 in the NICU of General Hospital of Nikaia “Aghios Panteleimon”. Preterm and term neonates with RDS hospitalized in the NICU were included and EXTEM (tissue factor-triggered extrinsic pathway), INTEM (ellagic acid activated intrinsic pathway), and FIBTEM (with platelet inhibitor cytochalasin D) assays were performed at the onset of the disease. Results: A hypocoagulable profile was noted in neonates with RDS compared to controls, expressed as significant prolongation of EXTEM CT (clotting time) and CFT (clot formation time), lower EXTEM A10 (amplitude at 10 min), MCF (maximum clot firmness), and LI60 (lysis index). Furthermore, prolongation of INTEM CFT and FIBTEM CT, and decreased INTEM and FIBTEM A10 and MCF were found in neonates with RDS. Multivariable logistic regression analysis showed that RDS is an independent factor for the recorded alterations in ROTEM variables. Conclusions: RDS is associated with a hypocoagulable profile and greater hyperfibrinolytic potential compared to healthy neonates.


Author(s):  
Michal Błażej Ponczek

Kininogens are multidomain glycoproteins found in the blood of most vertebrates. They are important in the blood coagulation cascade pathways - in intrinsic pathway activation leading to thrombin generation partially independently from tissue factor dependent extrinsic pathway, connecting blood coagulation with the kallikrein-kinin system. Nothing is known about the shape on atomic level therefore the endeavor to obtain the good-quality spatial structure of kininogens is important for a better understanding of their role in disease and treatment. Application of cryo-EM is important for solving the spatial structure of kininogens, drawing new frontiers in understanding the function and opening new pathways for drug development.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shashi Kiran Misra ◽  
Kamla Pathak

Abstract Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.


2021 ◽  
Vol 43 ◽  
pp. e55043
Author(s):  
José Ariévilo Gurgel Rodrigues ◽  
Johnny Peter Macedo Feitosa ◽  
Sandra de Aguiar Soares ◽  
Norma Maria Barros Benevides

In vitro studies have described the sulfated agaran from Acanthophora muscoides as an intrinsic inhibitor of thrombin generation (TG), but not in ex vivo assay. This investigation partially characterized a pyruvate fraction with in vitro and ex vivo effects on an intrinsic/extrinsic pathway-induced thrombin generation (TG) continuous model using 36 or 60-fold diluted mice or defibrinated, normal human plasma. Fraction separated by DEAE-cellulose chromatography exhibited charge homogeneity and non-sulfated polysaccharides (<100 kDa) by agarose and polyacrylamide gel electrophoresis, respectively, using Stains-all alone. Fourier Transform Infrared and Nuclear Magnetic Resonance studies indicated a 4,6-pyruvated agaran-structure. The fraction and heparin had no effect on prothrombin time, but there was a preponderant intrinsic rather than extrinsic pathway inhibition in TG assay; themselves, acting on both free and fibrin bound thrombin activity without chromogenic substrate interaction. Both fractions, desulfated and native, anticipated and induced thrombin formation in activators-devoid or normal plasma. In addition, mice pretreated with fraction (20 mg kg-1, intraperitoneally) reduced intrinsically plasma TG ex vivo after 2h. Heparin suppressed TG in vitro, but induced it ex vivo. Therefore, agaran from A. muscoides blocks TG on in vitro and ex vivo studies, suggesting to evaluate the blood coagulability status.


2021 ◽  
Author(s):  
Louise Tzung-Harn Hsieh ◽  
Scott J Dos Santos ◽  
Joy Ogbechi ◽  
Aloysius D Loglo ◽  
Francisco J Salguero ◽  
...  

The neglected tropical disease Buruli ulcer, caused by Mycobacterium ulcerans infection, displays coagulative necrosis in affected skin tissues. We previously demonstrated that exposure to the M. ulcerans exotoxin mycolactone depletes the expression of thrombomodulin and impacts anticoagulation at the endothelial cell surface. Moreover, while widespread fibrin deposition is a common feature of BU lesions, the cause of this phenotype is not clear. Here, we performed sequential staining of serial tissue sections of BU patient biopsies and unbiased analysis of up to 908 individual non-necrotic vessels of eight BU lesions to investigate its origins. Most vessels showed evidence of endothelial dysfunction being thrombomodulin-negative, von Willebrand factor-negative and/or had endothelium that stained positively for tissue factor (TF). Primary haemostasis was rarely evident by platelet glycoprotein CD61 staining. Localisation of TF in these lesions was complex and aberrant, including diffuse staining of the stroma some distance from the basement membrane and TF-positive infiltrating cells (likely eosinophils). This pattern of abnormal TF staining was the only phenotype that was significantly associated with fibrin deposition, and its extent correlated significantly with the distance that fibrin deposition extended into the tissue. Hence, fibrin deposition in Buruli ulcer lesions is likely driven by the extrinsic pathway of coagulation. To understand how this could occur, we investigated whether clotting factors necessary for fibrin formation might gain access to the extravascular compartment due to loss of the vascular barrier. In vitro assays using primary vascular and lymphatic endothelial cells showed that mycolactone increased the permeability of monolayers to dextran within 24 hours. Moreover, co-incubation of cells with interleukin-1β exacerbated mycolactones effects, nearly doubling the permeability of the monolayer compared to each challenge alone. We propose that leaky vascular and lymphatic systems are important drivers of extravascular fibrin deposition, necrosis and oedema frequently seen in Buruli ulcer patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Anaïs Locquet ◽  
Gabriel Ichim ◽  
Joseph Bisaccia ◽  
Aurelie Dutour ◽  
Serge Lebecque ◽  
...  

AbstractIn cancer cells only, TLR3 acquires death receptor properties by efficiently triggering the extrinsic pathway of apoptosis with Caspase-8 as apical protease. Here, we demonstrate that in the absence of Caspase-8, activation of TLR3 can trigger a form of programmed cell death, which is distinct from classical apoptosis. When TLR3 was activated in the Caspase-8 negative neuroblastoma cell line SH-SY5Y, cell death was accompanied by lysosomal permeabilization. Despite caspases being activated, lysosomal permeabilization as well as cell death were not affected by blocking caspase-activity, positioning lysosomal membrane permeabilization (LMP) upstream of caspase activation. Taken together, our data suggest that LMP with its deadly consequences represents a “default” death mechanism in cancer cells, when Caspase-8 is absent and apoptosis cannot be induced.


Sign in / Sign up

Export Citation Format

Share Document