Enhanced biogas production and in situ ammonia recovery from food waste using a gas-membrane absorption anaerobic reactor

2019 ◽  
Vol 292 ◽  
pp. 121864 ◽  
Author(s):  
Xuchuan Shi ◽  
Jiane Zuo ◽  
Mengyu Zhang ◽  
Yajiao Wang ◽  
Heng Yu ◽  
...  
2021 ◽  
Author(s):  
Dinesh Keloth kaithari ◽  
Buthaina Hamed Sulaiman Al Mahrouqi ◽  
Pradeep Kumar Krishnan

2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


2021 ◽  
Author(s):  
Cynthia Kusin Okoro‐Shekwaga ◽  
Andrew Ross ◽  
Miller Alonso Camargo‐Valero

2021 ◽  
Vol 130 ◽  
pp. 12-22
Author(s):  
Cynthia Kusin Okoro-Shekwaga ◽  
Andrew Barry Ross ◽  
Miller Alonso Camargo-Valero
Keyword(s):  

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


Sign in / Sign up

Export Citation Format

Share Document