scholarly journals Biogas potential of organic waste onboard cruise ships — a yet untapped energy source

Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.

Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 46
Author(s):  
Finger ◽  
Stepanovic ◽  
Llano

Anaerobic digestion of urban organic wastes, farming slurries or sewage sludge is a common practice in waste treatment plants. In the city of Reykjavik, the organic waste fraction constituted by 60% of biomass and 40% of food waste will be transformed by the local waste company SORPA providing biofuel for up to 10% of the cars. Such measures belong to the 2018-2030 Climate Action Plan from the Icelandic Government.


Author(s):  
Ajcharapa Chuanchai ◽  
Sawitree Tipnee ◽  
Yuwalee Unpaprom ◽  
Keng-Tung Wu

Recently, biogas production through anaerobic digestion technology has advanced massively. At the moment, caused by high energy demand and environmental concerns as the world’s population increases, the drive for anaerobic digestion processes is achievement drive within research and the industry for sustainable energy generation. The study evaluated biogas production from anaerobic mono-digestion of para grass in laboratory scale studies. In addition, improvement of the biogas yield from the grass via chemical pretreatment and leaching bed reactors was studied. Methane content of biogas was 54.36 % by mono- substrate. The results revealed that para grass can be treated anaerobically and are a good source of biogas.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 600 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Mojtaba Porhemmat ◽  
Biplob Kumar Pramanik

A large quantity of food waste (FW) is generated annually across the world and results in environmental pollution and degradation. This study investigated the performance of a 160 L anaerobic biofilm single-stage reactor in treating FW. The reactor was operated at different hydraulic retention times (HRTs) of 124, 62, and 35 days under mesophilic conditions. The maximum biogas and methane yield achieved was 0.934 L/g VSadded and 0.607 L CH4/g VSadded, respectively, at an HRT of 124 days. When HRT decreased to 62 days, the volatile fatty acid (VFA) and ammonia accumulation increased rapidly whereas pH, methane yield, and biogas yield decreased continuously. The decline in biogas production was likely due to shock loading, which resulted in scum accumulation in the reactor. A negative correlation between biogas yield and volatile solid (VS) removal efficiency was also observed, owing to the floating scum carrying and urging the sludge toward the upper portion of the reactor. The highest VS (79%) and chemical oxygen demand (COD) removal efficiency (80%) were achieved at an HRT of 35 days. Three kinetic models—the first-order kinetic model, the modified Gompertz model, and the logistic function model—were used to fit the cumulative biogas production experimental data. The kinetic study showed that the modified Gompertz model had the best fit with the experimental data out of the three models. This study demonstrates that the stability and performance of the anaerobic digestion (AD) process, namely biogas production rate, methane yield, intermediate metabolism, and removal efficiency, were significantly affected by HRTs.


2020 ◽  
Vol 181 ◽  
pp. 01005
Author(s):  
Makhura Emmanuel Pax ◽  
Edison Muzenda ◽  
Tumeletso Lekgoba

This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.


2021 ◽  
Vol 10 (3) ◽  
pp. 623-633
Author(s):  
Fahmi Arifan ◽  
Abdullah Abdullah ◽  
Siswo Sumardiono

One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate abiogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste.The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy.Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysisand kinetics model based on the Gompertz equation was obtained for the variable with the highest yield, compared to 70% cow dung, 15% chicken manure, and 15% tofu liquid waste and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also conluded that the use of  tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used


2020 ◽  
Vol 4 (1) ◽  
pp. 44
Author(s):  
Lukhi Mulia Shitophyta ◽  
Gita Indah Budiarti ◽  
Yusuf Eko Nugroho ◽  
Dika Fajariyanto

Biogas telah menjadi bahan bakar alternatif untuk mengurangi kelangkaan bahan bakar fosil. Biogas dapat dihasilkan dari limbah makanan seperti tongkol jagung. Tongkol jagung merupakan biomassa lignoselulosa dan mengandung kandungan total solid (TS) >15%. Produksi biogas dilakukan dengan solid-state anaerobic digestion dengan penambahan co-digestion limbah makanan. Co-digestion berfungsi untuk membantu proses pemecahan tongkol jagung. Tujuan penelitian ini adalah untuk mengkaji pengaruh persentase limbah makanan, reduksi volatile solid (VS), dan model kinetika produksi biogas dari tongkol jagung. Hasil peneltiian menunjukkan bahwa limbah makanan berpengaruh signifikan terhadap yield biogas (p < 0,05). Yield biogas tertinggi sebesar 584,49 mL g-1 VS-1 dan reduksi VS tertinggi sebesar 40% diperoleh pada limbah makanan 20%. Model kinetika produksi biogas dari tongkol jagung dan limbah makanan mengikuti model kinetika orde pertama.Biogas has become an alternative fuel to reduce the lack of fossil fuel. Biogas can be produced from organic wastes such as corn stover. Corn stover is a typical lignocellulosic biomass and contains a total solid (TS) content higher of 15%. Biogas production was conducted by solid-state anaerobic digestion with addition co-digestion of food waste. Co-digestion is useful to help the digestion of corn stover. The purposes of this study were to investigate the effect of the percentage of food waste, volatile solid (VS) reduction, and kinetic model on biogas production from corn stover. Results showed that food waste had a significant effect on biogas yield (p < 0.05). The highest biogas yield of 584.49 mL g-1 VS-1 and the highest VS reduction of 40% was obtained at food waste of 20%. The kinetic model of biogas production from corn stover and food waste followed the first-order kinetic model.


2021 ◽  
Author(s):  
Yan Wang ◽  
Tyler Huntington ◽  
Corinne Donahue Scown

The dynamics of microbial communities involved in anaerobic digestion of mixed organic waste are notoriously complex and difficult to model, yet successful operation of anaerobic digestion is critical to the goals of diverting high-moisture organic waste from landfills. Machine learning (ML) is ideally suited to capturing complex and nonlinear behavior that cannot be modeled mechanistically. This study uses 8 years of data collected from an industrial-scale anaerobic co-digestion (AcoD) operation at a municipal wastewater treatment plant in Oakland, California, combined with a powerful automated ML method, Tree-based Pipeline Optimization Tool, to develop an improved understanding of how different waste inputs and operating conditions impact biogas yield. The model inputs included daily input volumes of 31 waste streams and 5 operating parameters. Because different wastes are broken down at varying rates, the model explored a range of time lags ascribed to each waste input ranging from 0 to 30 days. The results suggest that the waste types (including rendering waste, lactose, poultry waste, and fats, oils, and greases) differ considerably in their impact on biogas yield on both a per-gallon basis and a mass of volatile solids basis, while operating parameters are not useful predictors in a carefully operated facility.


2004 ◽  
Vol 49 (10) ◽  
pp. 163-169 ◽  
Author(s):  
J. la Cour Jansen ◽  
C. Gruvberger ◽  
N. Hanner ◽  
H. Aspegren ◽  
 Svärd

Anaerobic digestion of sludge has been part of the treatment plant in Malmö for many years and several projects on optimisation of the digestion process have been undertaken in full scale as well as in pilot scale. In order to facilitate a more sustainable solution in the future for waste management, solid waste organic waste is sorted out from households for anaerobic treatment in a newly built city district. The system for treatment of the waste is integrated in a centralised solution located at the existing wastewater treatment plant. A new extension of the digester capacity enables separate as well as co-digestion of sludge together with urban organic waste from households, industry, restaurants, big kitchens, food stores, supermarkets, green markets etc. for biogas production and production of fertiliser. Collection and pre-treatment of different types of waste are in progress together with examination of biogas potential for different types of organic waste. Collection of household waste as well as anaerobic digestion in laboratory and pilot scale has been performed during the last year. It is demonstrated that organic household waste can be digested separately or in combination with sludge. In the latter case a higher biogas yield is found than should be expected from digestion of the two materials separately. Household waste from a system based on collection of organic waste from grinders could be digested at mesophilic conditions whereas digestion failed at thermophilic conditions.


Sign in / Sign up

Export Citation Format

Share Document