Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis

2021 ◽  
Vol 130 ◽  
pp. 12-22
Author(s):  
Cynthia Kusin Okoro-Shekwaga ◽  
Andrew Barry Ross ◽  
Miller Alonso Camargo-Valero
Keyword(s):  
Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


2021 ◽  
Author(s):  
Cynthia Kusin Okoro‐Shekwaga ◽  
Andrew Ross ◽  
Miller Alonso Camargo‐Valero

Author(s):  
Chuanqi Wang ◽  
Junjie Qiao ◽  
Yijia Song ◽  
Qi Yang ◽  
Dazhi Wang ◽  
...  

Abstract Nitric oxide (NO) is one of the most crucial products in the plasma-based nitrogen fixation process. In this work, in-situ measurements were performed for quantifying the NO synthesis spatially in a warm air glow discharge, through the method of Mid-infrared quantum cascade laser absorption spectroscopy (QCL-AS). Two ro-vibrational transitions at 1900.076 cm-1 and 1900.517 cm-1 of the ground-state NO(X) were probed sensitively by the help of the wavelength modulation spectroscopy (WMS) approach to increase the signal/noise (S/N) level. The results show a decline trend of NO synthesis rate along the discharge channel from the cathode to the anode. However, from the point of energy efficiency, the cathode region is of significantly low energy efficiency of NO production. Severe disproportionality was found for the high energy consumption but low NO production in the region of cathode area, compared to that in the positive column zone. Further analysis demonstrates the high energy cost of NO production in the cathode region, is ascribed to the extremely high reduced electric field E/N therein not selectively preferable for the processes of vibrational excitation or dissociation of N2 and O2 molecules. This drags down the overall energy efficiency of NO synthesis by this typical warm air glow discharge, particularly for the ones with short electrode gaps. Limitations of further improving the energy cost of NO synthesis by variations of the discharge operation conditions, such as discharge current or airflow rate, imply other effective manners able to tune the energy delivery selectively to the NO formation process, are sorely needed.


2019 ◽  
Vol 292 ◽  
pp. 121864 ◽  
Author(s):  
Xuchuan Shi ◽  
Jiane Zuo ◽  
Mengyu Zhang ◽  
Yajiao Wang ◽  
Heng Yu ◽  
...  

2019 ◽  
Author(s):  
Ali Al-Dossary ◽  
Heather Dillon ◽  
Jordan Farina

Abstract Variable Transmission Glazing (VTG) windows are an energy efficiency measures that have relatively high first cost. This paper describes the in-situ performance of VTG installed in an atrium space at the University of Portland. An experiment was conducted using thermocouples and photosensors to examine temperature gradients and solar gains across electrochromic glazing windows to quantify the performance of the installed system in terms of energy and cost saving. The system performance was measured with an average efficiency of 98.73% when the VTG was operating. The annual savings of the glazing system installed was estimated to be $7,683.


Science ◽  
2019 ◽  
Vol 365 (6448) ◽  
pp. 73-75 ◽  
Author(s):  
Bo-Yu Liu ◽  
Fei Liu ◽  
Nan Yang ◽  
Xiao-Bo Zhai ◽  
Lei Zhang ◽  
...  

Lightweight magnesium alloys are attractive as structural materials for improving energy efficiency in applications such as weight reduction of transportation vehicles. One major obstacle for widespread applications is the limited ductility of magnesium, which has been attributed to 〈c+a〉 dislocations failing to accommodate plastic strain. We demonstrate, using in situ transmission electron microscope mechanical testing, that 〈c+a〉 dislocations of various characters can accommodate considerable plasticity through gliding on pyramidal planes. We found that submicrometer-size magnesium samples exhibit high plasticity that is far greater than for their bulk counterparts. Small crystal size usually brings high stress, which in turn activates more 〈c+a〉 dislocations in magnesium to accommodate plasticity, leading to both high strength and good plasticity.


2014 ◽  
Vol 69 (9) ◽  
pp. 1886-1893 ◽  
Author(s):  
Chaeyoung Lee ◽  
Sewook Lee ◽  
Sun-Kee Han ◽  
Sunjin Hwang

This study was performed to investigate the influence of operational pH on dark H2 fermentation of food waste by employing anaerobic batch reactors. The highest maximum H2 yield was 1.63 mol H2/mol hexoseadded at operational pH 5.3, whereas the lowest maximum H2 yield was 0.88 mol H2/mol hexoseadded at operational pH 7.0. With decreasing operational pH values, the n-butyrate concentration tended to increase and the acetate concentration tended to decrease. The highest hydrogen conversion efficiency of 11.3% was obtained at operational pH 5.3, which was higher than that (8.3%) reported by a previous study (Kim et al. (2011) ‘Effect of initial pH independent of operational pH on hydrogen fermentation of food waste’, Bioresource Technology 102 (18), 8646–8652). The new result indicates that the dark fermentation of food waste was stable and efficient in this study. Fluorescence in situ hybridization (FISH) analysis showed that Clostridium species Cluster I accounted for 84.7 and 13.3% of total bacteria at operational pH 5.3 and pH 7.0, respectively, after 48 h operation.


2014 ◽  
Vol 899 ◽  
pp. 3-6 ◽  
Author(s):  
Martin Kamenský ◽  
Anna Vaskova ◽  
Marián Vertaľ

The next step in energy efficiency building design focus on near energy zero buildings. To design such buildings is important to understand how people use low energy building and to find reserves in energy. The paper presents an analysis of reserves in a family house. The analysis is done with simulations of different design and operation solutions based on knowledge from in situ measurements. Results show there are reserves in the heating and cooling period of year, which can lead to further energy savings of up to 15% and internal environment improvements.


Sign in / Sign up

Export Citation Format

Share Document