The coupling of mixotrophic denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox) promoting the start-up of anammox by addition of calcium nitrate

2021 ◽  
pp. 125822
Author(s):  
Hao Sheng ◽  
Rui Weng ◽  
Yan He ◽  
Zheng Wei ◽  
Yanmei Yang ◽  
...  
2017 ◽  
Vol 63 (2) ◽  
pp. 687-701 ◽  
Author(s):  
Fleur A. E. Roland ◽  
François Darchambeau ◽  
Alberto V. Borges ◽  
Cédric Morana ◽  
Loreto De Brabandere ◽  
...  

2015 ◽  
Vol 57 (30) ◽  
pp. 13958-13978 ◽  
Author(s):  
Mumtazah Ibrahim ◽  
Norjan Yusof ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Mohd Ali Hassan

Author(s):  
Huiping Xu ◽  
Guanghua Lu ◽  
Chenwang Xue

The nitrogen pollution of rivers as a global environmental problem has received great attentions in recent years. The occurrence of emerging pollutants in high-altitude rivers will inevitably affect the dissimilatory nitrate reduction processes. In this study, sediment slurry experiments combined with 15N tracer techniques were conducted to investigate the influence of pharmaceutical and personal care products (alone and in combination) on denitrification and the anaerobic ammonium oxidation (anammox) process and the resulting N2O release in the sediments of the Yarlung Zangbo River. The results showed that the denitrification rates were inhibited by sulfamethoxazole (SMX) treatments (1–100 μg L−1) and the anammox rates decreased as the SMX concentrations increased, which may be due to the inhibitory effect of this antibiotic on nitrate reducing microbes. 2-Ethylhexyl-4-methoxycinnamate (EHMC) impacted nitrogen transformation mainly though the inhibition of the anammox processes. SMX and EHMC showed a superposition effect on the denitrification processes. The expression levels of the denitrifying functional genes nirS and nosZ were decreased and N2O release was stimulated due to the presence of SMX and/or EHMC in the sediments. To the best of our knowledge, this study is the first to report the effects of EHMC and its mixtures on the dissimilatory nitrate reduction processes and N2O releases in river sediments. Our results indicated that the widespread occurrence of emerging pollutants in high-altitude rivers may disturb the nitrogen transformation processes and increase the pressure of global warming.


2014 ◽  
Vol 1073-1076 ◽  
pp. 297-300
Author(s):  
Jia Jing Sun ◽  
Lei Zhang ◽  
Luo Wang ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of acetate on anammox process. The nitrogen removal rate of anammox process was elevated at low acetate content (1 mmol/L) and decreased at high acetate content (3 and 4 mmol/L). The ratios among NH4+-N, NO2--N and NO3--N were not related acetate content and remained at 1:1.50:0.07, but the ratios between acetate and three forms of nitrogen were acetate dependent.


Author(s):  
Hao Sheng ◽  
Rui Weng ◽  
Jin Zhu ◽  
Yan He ◽  
Chengjin Cao ◽  
...  

2014 ◽  
Vol 675-677 ◽  
pp. 410-415
Author(s):  
Hang Li ◽  
Lei Zhang ◽  
Zhi Xing Li ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of butyrate on anammox process. The nitrogen removal rate of anammox process was elevated at low butyrate content (1 mmol/L) and decreased at high butyrate content (3 mmol/L). NH4+-N:NO2--N:NO3--N:butyrate ratio was 1:1.25:0.08:0.04 and 1:7.26:0.10:1.85 when butyrate concentration was 1 mmol/L and 3 mmol/L.


2014 ◽  
Vol 22 (4) ◽  
pp. 2925-2934 ◽  
Author(s):  
Long-Fei Ren ◽  
Shou-Qing Ni ◽  
Cui Liu ◽  
Shuang Liang ◽  
Bo Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document