scholarly journals Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review

2015 ◽  
Vol 57 (30) ◽  
pp. 13958-13978 ◽  
Author(s):  
Mumtazah Ibrahim ◽  
Norjan Yusof ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Mohd Ali Hassan
2005 ◽  
Vol 71 (2) ◽  
pp. 1066-1071 ◽  
Author(s):  
Didem Güven ◽  
Ana Dapena ◽  
Boran Kartal ◽  
Markus C. Schmid ◽  
Bart Maas ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.


2017 ◽  
pp. 117
Author(s):  
S. Suneethi ◽  
Kurian Joseph

Release of nitrate and ammonia rich wastewaters into the natural waters promotes eutrophication, aquatic toxicity and deterioration in water quality. Anaerobic Ammonium Oxidation (ANAMMOX) process is an advanced biological nitrogen removal alternative to traditional nitrification – denitrification, which removes ammonia using nitrite as the electron acceptor without oxygen. The feasibility to enrich ANAMMOX bacteria from anaerobic seed culture to start up an Anaerobic Membrane Bioreactor (An MBR) for N – removal is reported in this paper. The seed culture used was anaerobic digester sludge collected from a Sewage Treatment Plant (STP) in Chennai. Stabilization performance of An MBR is reported for a period of 250 days, for the presence of ANAMMOX bacteria and its sustained activity in terms of Nitrogen transformations to Ammonia, Nitrite and Nitrate along with Hydrazine and Hydroxylamine.


2018 ◽  
Vol 79 (5) ◽  
pp. 975-984 ◽  
Author(s):  
Tatsuru Kamei ◽  
Rawintra Eamrat ◽  
Kenta Shinoda ◽  
Yasuhiro Tanaka ◽  
Futaba Kazama

Abstract Nitrate removal during anaerobic ammonium oxidation (anammox) treatment is a concern for optimization of the anammox process. This study demonstrated the applicability and long-term stability of the coupled anammox and hydrogenotrophic denitrification (CAHD) process as an alternative method for nitrate removal. Laboratory-scale fixed bed anammox reactors (FBR) supplied with H2 to support denitrification were operated under two types of synthetic water. The FBRs showed simultaneous NH4-N and NO3-N removal, indicating that the CAHD process can support NO3-N removal during the anammox process. Intermittent H2 supply (e.g. 5 mL/min for a 1-L reactor, 14/6-min on/off cycle) helped maintain the CAHD process without deteriorating its performance under long-term operation and resulted in a nitrogen removal rate of 0.21 kg-N/m3/d and ammonium, nitrate, and dissolved inorganic nitrogen removal efficiencies of 73.4%, 80.4%, and 77%, respectively. The microbial community structure related to the CAHD process was not influenced by changes in influent water quality, and included the anammox bacteria ‘Candidatus Jettenia’ and a Sulfuritalea hydrogenivorans-like species as the dominant bacteria even after long-term reactor operation, suggesting that these bacteria are key to the CAHD process. These results indicate that the CAHD process is a promising method for enhancing the efficiency of anammox process.


2014 ◽  
Vol 1073-1076 ◽  
pp. 297-300
Author(s):  
Jia Jing Sun ◽  
Lei Zhang ◽  
Luo Wang ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of acetate on anammox process. The nitrogen removal rate of anammox process was elevated at low acetate content (1 mmol/L) and decreased at high acetate content (3 and 4 mmol/L). The ratios among NH4+-N, NO2--N and NO3--N were not related acetate content and remained at 1:1.50:0.07, but the ratios between acetate and three forms of nitrogen were acetate dependent.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Ivar Zekker ◽  
Oleg Artemchuk ◽  
Ergo Rikmann ◽  
Kelvin Ohimai ◽  
Gourav Dhar Bhowmick ◽  
...  

Biological nutrient removal from wastewater to reach acceptable levels is needed to protect water resources and avoid eutrophication. The start-up of an anaerobic ammonium oxidation (anammox) process from scratch was investigated in a 20 L sequence batch reactor (SBR) inoculated with a mixture of aerobic and anaerobic sludge at 30 ± 0.5 °C with a hydraulic retention time (HRT) of 2–3 days. The use of NH4Cl, NaNO2, and reject water as nitrogen sources created different salinity periods, in which the anammox process performance was assessed: low (<0.2 g of Cl−/L), high (18.2 g of Cl−/L), or optimum salinity (0.5–2 g of Cl−/L). Reject water feeding gave the optimum salinity, with an average nitrogen removal efficiency of 80%, and a TNRR of 0.08 kg N/m3/d being achieved after 193 days. The main aim was to show the effect of a hydrazine addition on the specific anammox activity (SAA) and denitrification activity in the start-up process to boost the autotrophic nitrogen removal from scratch. The effect of the anammox intermediate hydrazine addition was tested to assess its concentration effect (range of 2–12.5 mg of N2H4/L) on diminishing denitrifier activity and accelerating anammox activity at the same time. Heterotrophic denitrifiers’ activity was diminished by all hydrazine additions compared to the control; 5 mg of N2H4/L added enhanced SAA compared to the control, achieving an SAA of 0.72 (±0.01) mg N/g MLSS/h, while the test with 7.5 mg of N2H4/L reached the highest overall SAA of 0.98 (±0.09) mg N g/MLSS/h. The addition of trace amounts of hydrazine for 6 h was also able to enhance SAA after inhibition by organic carbon source sodium acetate addition at a high C/N ratio of 10/1. The start-up of anammox bacteria from the aerobic–anaerobic suspended biomass was successful, with hydrazine significantly accelerating anammox activity and decreasing denitrifier activity, making the method applicable for side-stream as well as mainstream treatment.


2014 ◽  
Vol 675-677 ◽  
pp. 410-415
Author(s):  
Hang Li ◽  
Lei Zhang ◽  
Zhi Xing Li ◽  
Xiao Bo Chen

Anaerobic ammonium oxidation (anammox) process is a heated researched biotechnology for nitrogen removal in wastewater. The application of the process is limited due to its long start-up time and sensitivity to organic matters. This paper discussed the effects of butyrate on anammox process. The nitrogen removal rate of anammox process was elevated at low butyrate content (1 mmol/L) and decreased at high butyrate content (3 mmol/L). NH4+-N:NO2--N:NO3--N:butyrate ratio was 1:1.25:0.08:0.04 and 1:7.26:0.10:1.85 when butyrate concentration was 1 mmol/L and 3 mmol/L.


2014 ◽  
Vol 22 (4) ◽  
pp. 2925-2934 ◽  
Author(s):  
Long-Fei Ren ◽  
Shou-Qing Ni ◽  
Cui Liu ◽  
Shuang Liang ◽  
Bo Zhang ◽  
...  

2012 ◽  
Vol 33 (4) ◽  
pp. 639-650 ◽  
Author(s):  
Grzegorz Cema ◽  
Adam Sochacki ◽  
Jakub Kubiatowicz ◽  
Piotr Gutwiński ◽  
Joanna Surmacz-Górska

There are certain well-known methods of diminishing concentrations of nitrogen compounds, but they are ineffective in case of nitrogen-rich wastewater with a low content of biodegradable carbon. Partial nitritation followed by anaerobic ammonium oxidation (Anammox) process appear to be an excellent alternative for traditional nitrification and denitrification. This paper presents the feasibility of successful start-up of Anammox process in a laboratory-scale membrane bioreactor (MBR). It was shown that the combination of membrane technology and Anammox process allowed to create a new highly efficient and compact system for nitrogen removal. It was possible to achieve average nitrogen removal efficiency equal to 76.7 ± 8.3%. It was shown that the start-up period of 6 months was needed to obtain high nitrogen removal efficiency. The applied biochemical model of the Anammox process was based on the state-of-the-art Activated Sludge Model No.1 (ASM 1) which was modified for accounting activity of autotrophs (nitrite-oxidising bacteria and nitrateoxidising bacteria) and anammox bacteria. In order to increase the predictive power of the simulation selected parameters of the model were adjusted during model calibration. Readjustment of the model parameters based on the critically evaluated data of the reactor resulted in a satisfactory match between the model predictions and the actual observations.


Sign in / Sign up

Export Citation Format

Share Document