N-Substituted piperazine derivatives as potential multitarget agents acting on histamine H3 receptor and cancer resistance proteins

2020 ◽  
Vol 30 (22) ◽  
pp. 127522
Author(s):  
Katarzyna Szczepańska ◽  
Annamária Kincses ◽  
Klaudia Vincze ◽  
Ewa Szymańska ◽  
Gniewomir Latacz ◽  
...  
2018 ◽  
Vol 25 (14) ◽  
pp. 1609-1626 ◽  
Author(s):  
Katarzyna Szczepanska ◽  
Kamil Kuder ◽  
Katarzyna Kiec-Kononowicz

Since its discovery in 1983, followed by gene cloning in 1999, the histamine H3 receptor served as an outstanding target for drug discovery. The wide spectrum of possible therapeutic implications makes H3R's one of the most researched areas in the vast GPCR ligands field - started from imidazole containing ligands, through various successful imidazole replacements, with recent introduction of Wakix® to pharmaceutical market. One such replacement is piperazine moiety, a significant versatile scaffold in rational drug design for most of the GPCR ligands. Therefore, herein, we review ligands built on piperazine, as well as its seven membered analogue azepine, that target H3R’s and their potential therapeutical applications, in order to elucidate the current state of the art in this vast field. Due to a high level of structural divergence among compounds described herein, we decided to divide them into groups, where the key division element was the position of nitrogen basicity decreasing moieties in (homo)piperazine ring. Paying attention to a number of published structures and their overall high biological activity, one can realize that the (homo)piperazine scaffold bids a versatile template also for histamine H3 receptor ligands. With two possible substitution sites and therefore a number of possible structural combinations, piperazine derivatives stand as one of the largest group of high importance among H3R ligands.


2009 ◽  
Vol 58 (S1) ◽  
pp. 47-48
Author(s):  
K. J. Kuder ◽  
X. Ligneau ◽  
J.-C. Camelin ◽  
D. Łażewska ◽  
J.-C. Schwartz ◽  
...  

1992 ◽  
Vol 267 (35) ◽  
pp. 25315-25320
Author(s):  
Y Cherifi ◽  
C Pigeon ◽  
M Le Romancer ◽  
A Bado ◽  
F Reyl-Desmars ◽  
...  

2021 ◽  
Vol 405 ◽  
pp. 113193
Author(s):  
Alaa Alachkar ◽  
Mohamed Lotfy ◽  
Ernest Adeghate ◽  
Dorota Łażewska ◽  
Katarzyna Kieć-Kononowicz ◽  
...  

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A2-A2
Author(s):  
Saivishal Daripelli ◽  
Parusharamulu Molgara ◽  
Nageswararao Muddana ◽  
Pradeep Jayarajan ◽  
Venkat Reddy Mekala ◽  
...  

Abstract Introduction Narcolepsy is a chronic sleep disorder characterized by overwhelming daytime drowsiness, sudden attacks of sleep and sometimes accompanied by cataplexy. Although the orexin deficiency is considered to be the primary cause of this disorder, lot of attention has been diverted on targeting histaminergic neurotransmission by blockade of histamine H3 receptor (H3R). Samelisant (SUVN-G3031) is one of the potent and selective H3R inverse agonist currently being evaluated in a Phase 2 study as monotherapy for the treatment of narcolepsy with and without cataplexy (ClinicalTrials.gov Identifier: NCT04072380). In the current research work, Samelisant was evaluated for neurotransmitter changes in rats and sleep EEG in orexin knockout mice, a reliable proof-of-concept study for treatment of excessive daytime sleepiness and cataplexy in narcolepsy. Methods Binding affinity of Samelisant towards human and rat histamine H3R was evaluated in in-vitro radioligand binding assay and functionality in GTP□S assay. Effect of Samelisant was studied in (R)-α-methyl histamine induced dipsogenia. In rat brain microdialysis, Samelisant was evaluated for its effects on modulation of neurotransmitters like histamine, dopamine and norepinephrine. Male orexin knockout mice were implanted with telemetric device for simultaneous monitoring of electroencephalography (EEG) and electromyography. Effects of Samelisant (3 and 10 mg/kg, p.o.) were evaluated during active period of animals. Results Samelisant is an inverse agonist at histamine H3 receptors with hKi of 8.7 nM and showed minimal binding against over 70 target sites. Samelisant produced significant increase in histamine, dopamine and norepinephrine levels in cortex. Samelisant produced no change in the striatal and accumbal dopamine levels in rats, suggesting no propensity to induce abuse liability. Samelisant blocked R-α-methyl histamine induced water intake and produced dose dependent increase in tele-methylhistamine levels in various brain regions and in cerebrospinal fluid of male Wistar rats. Samelisant produced significant increase in wakefulness with concomitant decrease in non-rapid eye movement sleep in orexin knockout mice. Samelisant also significantly decreased number of cataplectic episodes in orexin knockout mice. Conclusion Samelisant is an inverse agonist at histamine H3 receptor and results from the preclinical studies presented here provide a strong evidence for the potential utility of Samelisant in the treatment of narcolepsy with and without cataplexy. Support (if any):


2019 ◽  
Vol 236 (6) ◽  
pp. 1937-1948 ◽  
Author(s):  
Alberto Avila-Luna ◽  
Camilo Ríos ◽  
Arturo Gálvez-Rosas ◽  
Sergio Montes ◽  
José-Antonio Arias-Montaño ◽  
...  

2009 ◽  
Vol 205 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Fumikazu Yokoyama ◽  
Miki Yamauchi ◽  
Masayo Oyama ◽  
Kunihiro Okuma ◽  
Kaname Onozawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document