intrinsic activity
Recently Published Documents


TOTAL DOCUMENTS

777
(FIVE YEARS 256)

H-INDEX

60
(FIVE YEARS 14)

2022 ◽  
Author(s):  
Masanori Nomoto ◽  
Emi Murayama ◽  
Shuntaro Ohno ◽  
Reiko Okubo-Suzuki ◽  
Shin-ichi Muramatsu ◽  
...  

In entorhinal-hippocampal networks, the trisynaptic pathway, including the CA3 recurrent circuit, processes episodes of context and space. Recurrent connectivity can generate reverberatory activity, an intrinsic activity pattern of neurons that occurs after sensory inputs have ceased. However, the role of reverberatory activity in memory encoding remains incompletely understood. Here we demonstrate that in mice, synchrony between conditioned stimulus (CS) and unconditioned stimulus (US)-responsible cells occurs during the reverberatory phase, lasting for approximately 15 s, but not during CS and US inputs, in the CA1 and the reverberation is crucial for the linking of CS and US in the encoding of delay-type cued-fear memory. Retrieval-responsive cells developed primarily during the reverberatory phase. Mutant mice lacking N-methyl-D-aspartate receptors (NRs) in CA3 showed a cued-fear memory impairment and a decrease in synchronized reverberatory activities between CS- and US-responsive CA1 cells. Optogenetic CA3 silencing at the reverberatory phase during learning impaired cued-fear memory. Our findings suggest that reverberation recruits future retrieval-responsive cells via synchrony between CS- and US-responsive cells. The hippocampus uses reverberatory activity to link CS and US inputs, and avoid crosstalk during sensory inputs.


2022 ◽  
Vol 9 ◽  
Author(s):  
Jiabiao Yan ◽  
Mingkun Xia ◽  
Chenguang Zhu ◽  
Dawei Chen ◽  
Fanglin Du

Perovskite oxides have been established as a promising kind of catalyst for alkaline oxygen evolution reactions (OER), because of their regulated non-precious metal components. However, the surface lattice is amorphous during the reaction, which gradually decreases the intrinsic activity and stability of catalysts. Herein, the precisely control tungsten atoms substituted perovskite oxides (Pr0.5Ba0.5Co1-xWxO3-δ) nanowires were developed by electrostatic spinning. The activity and Tafel slope were both dependent on the W content in a volcano-like fashion, and the optimized Pr0.5Ba0.5Co0.8W0.2O3-δ exhibits both excellent activity and superior stability compared with other reported perovskite oxides. Due to the outermost vacant orbitals of W6+, the electronic structure of cobalt sites could be efficiently optimized. Meanwhile, the stronger W-O bond could also significantly improve the stability of latticed oxide atoms to impede the generation of surface amorphous layers, which shows good application value in alkaline water splitting.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guangfu Qian ◽  
Jinli Chen ◽  
Tianqi Yu ◽  
Jiacheng Liu ◽  
Lin Luo ◽  
...  

AbstractConstructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO2 nano-needle with three-phase heterojunction (Ni/MoO2@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔGH* for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO2@CN exhibits good activity for HER (ƞ-10 = 33 mV, ƞ-1000 = 267 mV) and OER (ƞ10 = 250 mV, ƞ1000 = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm−2 for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS.


2021 ◽  
Vol 22 (23) ◽  
pp. 13137
Author(s):  
Zhibin Liu ◽  
Manuel Corva ◽  
Hatem M. A. Amin ◽  
Niclas Blanc ◽  
Julia Linnemann ◽  
...  

Single-entity electrochemistry allows for assessing electrocatalytic activities of individual material entities such as nanoparticles (NPs). Thus, it becomes possible to consider intrinsic electrochemical properties of nanocatalysts when researching how activity relates to physical and structural material properties. Conversely, conventional electrochemical techniques provide a normalized sum current referring to a huge ensemble of NPs constituting, along with additives (e.g., binders), a complete catalyst-coated electrode. Accordingly, recording electrocatalytic responses of single NPs avoids interferences of ensemble effects and reduces the complexity of electrocatalytic processes, thus enabling detailed description and modelling. Herein, we present insights into the oxygen evolution catalysis at individual cubic Co3O4 NPs impacting microelectrodes of different support materials. Simulating diffusion at supported nanocubes, measured step current signals can be analyzed, providing edge lengths, corresponding size distributions, and interference-free turnover frequencies. The provided nano-impact investigation of (electro-)catalyst-support effects contradicts assumptions on a low number of highly active sites.


NeuroImage ◽  
2021 ◽  
pp. 118836
Author(s):  
Matthew F. Singh ◽  
Anxu Wang ◽  
Michael Cole ◽  
ShiNung Ching ◽  
Todd S. Braver

2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Giuseppe Pio Piemontese ◽  
Lorenzo Bartoli ◽  
Giovanni Statuto ◽  
Andrea Angeletti ◽  
Giulia Massaro ◽  
...  

Abstract Aims Interest in permanent His bundle pacing (HBP) as a means of both preventing pacing-induced cardiomyopathy and providing physiological resynchronization by normalization of His-Purkinje activation is constantly growing. Current devices are not specifically designed for HBP, which gives rise to programming challenges. To evaluate the critical troubleshooting HBP options in patients with permanent atrial fibrillation (AF) and variable degree of atrio-ventricular block (AVB) who receive HBP through a lead connected to the atrial port, and an additional ventricular ‘backup’. Methods and results Between December 2018 and July 2021, 156 consecutive patients with indication for pacing underwent HBP. Among these, 37 had permanent AF with documented symptomatic pauses. Fourteen of them received a dual-chamber device which was used to place a backup right ventricle (RV) lead; in this scenario, the His lead is implanted in the right atrial (RA) port, the RV lead in the RV port. Depending on the presence of an additional left ventricle (LV) lead, either a dual-chamber and a CRT device can be used. In this context, the events marked as atrial sensed (As) or paced (Ap) are indeed ventricular, so that sensing is more complex. A clinical scenario is atrial activity oversensed on the His channel (As) leading to RV dyssynchronous pacing in the ventricular safety pacing (VSP) window. A second one is intrinsic QRS undersensing causing inappropriate His pacing. The interplay of intrinsic ventricular activity (rate, signal amplitude, and slew rate on both the His and the ventricular channel) and of the HV interval may be of key importance to troubleshoot As–Vp (atrial sensed–ventricular paced) (Figure 1A) as well as Vs–Ab (ventricular sensed–atrial blanking period) sequences (Figure 1B). Changing sensitivity and sensing configuration may help to fix these issues. DVI(R) mode programming may indeed prove safer than DDD(R) in the setting of preserved intrinsic activity or in the event of intermittent His capture loss. Paced AV delay should be programmed slightly longer than H-V+QRS duration to avoid unnecessary RV pacing with pseudo-fusion (too short) (Figure 2A) and possibly R/T events (too long). Stability of H-V interval and of QRS duration must be verified at each device follow-up by decremental His pacing to ensure consistent sensitivity of the ventricular signal beyond stable His capture, that may be challenged by infra-Hisian block (Figure 2B). Conclusions Owing to the absence of HBP-specific devices, HBP shall be made safe and effective by careful troubleshooting, consisting of sensitivity setting, paced AV interval and mode programming. 557 Figure


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7025
Author(s):  
Katarzyna Kucwaj-Brysz ◽  
Anna Dela ◽  
Sabina Podlewska ◽  
Marek Bednarski ◽  
Agata Siwek ◽  
...  

Several studies confirmed the reciprocal interactions between adrenergic and serotoninergic systems and the influence of these phenomena on the pathogenesis of anxiety. Hence, searching for chemical agents with a multifunctional pharmacodynamic profile may bring highly effective therapy for CNS disorders. This study presents a deep structural insight into the hydantoin-arylpiperazine group and their serotonin/α-adrenergic activity. The newly synthesized compounds were tested in the radioligand binding assay and the intrinsic activity was evaluated for the selected derivatives. The computer-aided SAR analysis enabled us to answer questions about the influence of particular structural fragments on selective vs. multifunctional activity. As a result of the performed investigations, there were two leading structures: (a) compound 12 with multifunctional adrenergic-serotonin activity, which is a promising candidate to be an effective anxiolytic agent; (b) compound 14 with high α1A/α1D affinity and selectivity towards α1B, which is recommended due to the elimination of probable cardiotoxic effect. The structural conclusions of this work provide significant support for future lead optimization in order to achieve the desired pharmacodynamic profile in searching for new CNS-modulating agents.


2021 ◽  
Author(s):  
Lieven Gevers ◽  
Linga Enakonda ◽  
Ameen Shahid ◽  
Samy Ould-Chikh ◽  
Pasi Paalanen ◽  
...  

Abstract Mn-based oxides are promising catalysts for the selective catalytic reduction (SCR) of NOx with NH3 at temperatures below 200 °C. There is a general agreement that combining Mn with another metal oxide, such as CeOx improves catalytic activity. However, to date, there is an unsettling debate on the role of Ce as Mn promoter on the SCR reaction. To solve this, here we have systematically studied the effect Ce by preparing, characterizing and testing around 30 catalysts aiming for a well-controlled homogeneous dispersion of the metal oxides. Our results show that, at low-temperature SCR conditions, the intrinsic activity of the Mn active sites is not positively affected by Ce species in intimate contact. In fact, the results suggest that Ce is electronically interacting with Mn and decreasing the active-site average activity. To confirm our findings, activities reported in literature were surface-area normalized and the analysis do not support an increase in activity by Ce addition. Therefore, we can unequivocally conclude that the beneficial effect of Ce is textural, increasing catalyst surface area and therefore the total number of active sites. Besides, addition of Ce is increasing N2 selectivity as it suppresses second-step oxidation reactions and thus N2O formation by structurally diluting the MnOx active sites. Therefore, the textural promoting effect still makes Ce an interesting additive for Mn catalysts.


2021 ◽  
Author(s):  
Ruopeng Li ◽  
Yaqiang Li ◽  
Peixia Yang ◽  
Penghui Ren ◽  
Dan Wang ◽  
...  

Abstract High-efficiency alkaline seawater electrolysis is a promising strategy to promote the sustainability of wide-ranging hydrogen (H2) production, and the global goal of carbon neutrality. Searching for an ideal candidate with low cost and high electrocatalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is a major objective. Herein, we report delicate, heterostuctured NiTe-NiCoN and NiTe-NiFeN electrocatalysts constructed of nickel cobalt nitride and nickel iron nitride nanosheets uniformly anchored on NiTe nanorod arrays, respectively, which ensure outstanding HER and OER activity along with ultra-long-term stability. Impressively, the NiTe-NiCoN || NiTe-NiFeN couples in alkaline seawater solution delivered 500 mA cm−2 at a record low voltage of 1.84 V, and realized an industry-level performance via a solar-powered system and a wind-power system. Further comprehensive analysis has revealed that interface engineering strategy not only ensures that the surficial nitride exposes abundant active sites, but also induces electron modulation that optimizes the binding strength of absorption/desorption for the reaction intermediates to enhanced the the intrinsic activity, as well as facilitate faster electron-mass transfer. Notably, a high electric field intensity generated by the unique nanosheet-nanorod structure induces a local “hydroxide enrichment” environment that effectively promotes the OER kinetics, while inhibits the side effects of chlorine. This work shed lights on these novel heterostructured electrocatalysts with strong synergy, while demonstrating the key role of the unique nanostructures in high-efficiency seawater electrolysis.


Sign in / Sign up

Export Citation Format

Share Document