scholarly journals High-speed Super-resolution Imaging through Interpolated Deconvolution of Live-cell TIRF Images

2009 ◽  
Vol 96 (3) ◽  
pp. 639a-640a ◽  
Author(s):  
Shaohui Huang ◽  
Lawrence Lifshitz ◽  
Karl Bellve ◽  
Clive Standley ◽  
Kevin Fogarty ◽  
...  
Nano Letters ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 1374-1381 ◽  
Author(s):  
Simon Hennig ◽  
Sebastian van de Linde ◽  
Martina Lummer ◽  
Matthias Simonis ◽  
Thomas Huser ◽  
...  

2012 ◽  
Vol 63 (1) ◽  
pp. 519-540 ◽  
Author(s):  
Sebastian van de Linde ◽  
Mike Heilemann ◽  
Markus Sauer

Nanoscale ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 3626-3632 ◽  
Author(s):  
Muthukumaran Venkatachalapathy ◽  
Vivek Belapurkar ◽  
Mini Jose ◽  
Arnaud Gautier ◽  
Deepak Nair

Combination of SRRF and stochastic labeling based on FAST:Fluorogen complexes to achieve super-resolution in 2D, 3D and in time-lapse.


CLEO: 2013 ◽  
2013 ◽  
Author(s):  
Fang Huang ◽  
Tobias M. P. Hartwich ◽  
Felix E. Rivera-Molina ◽  
Yu Lin ◽  
Jordan R. Myers ◽  
...  

Author(s):  
Matthieu Lagardère ◽  
Ingrid Chamma ◽  
Emmanuel Bouilhol ◽  
Macha Nikolski ◽  
Olivier Thoumine

AbstractFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these limitations, we present here a unified computer program that allows one to model and predict membrane protein dynamics at the ensemble and single molecule level, so as to reconcile imaging paradigms and quantitatively characterize protein behavior in complex cellular environments. FluoSim is an interactive real-time simulator of protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT. The software, thoroughly validated against experimental data on the canonical neurexin-neuroligin adhesion complex, integrates diffusion coefficients, binding rates, and fluorophore photo-physics to calculate in real time the distribution of thousands of independent molecules in 2D cellular geometries, providing simulated data of protein dynamics and localization directly comparable to actual experiments.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyu Zhao ◽  
Zhaojun Wang ◽  
Tongsheng Chen ◽  
Ming Lei ◽  
Baoli Yao ◽  
...  

Super-resolution microscopy surpasses the diffraction limit to enable the observation of the fine details in sub-cellular structures and their dynamics in diverse biological processes within living cells. Structured illumination microscopy (SIM) uses a relatively low illumination light power compared with other super-resolution microscopies and has great potential to meet the demands of live-cell imaging. However, the imaging acquisition and reconstruction speeds limit its further applications. In this article, recent developments all targeted at improving the overall speed of SIM are reviewed. These comprise both hardware and software improvements, which include a reduction in the number of raw images, GPU acceleration, deep learning and the spatial domain reconstruction. We also discuss the application of these developments in live-cell imaging.


Sign in / Sign up

Export Citation Format

Share Document