cell imaging
Recently Published Documents





Rahul V. Khose ◽  
Prachi Bangde ◽  
Mahesh P. Bondarde ◽  
Pratik S. Dhumal ◽  
Madhuri A. Bhakare ◽  

2022 ◽  
Vol 1249 ◽  
pp. 131590
Pankaj Verma ◽  
Udai P. Singh ◽  
Ray J. Butcher ◽  
Somesh Banerjee ◽  
Partha Roy

2022 ◽  
Vol 8 ◽  
Ebony Rose Watson ◽  
Atefeh Taherian Fard ◽  
Jessica Cara Mar

Integrating single cell omics and single cell imaging allows for a more effective characterisation of the underlying mechanisms that drive a phenotype at the tissue level, creating a comprehensive profile at the cellular level. Although the use of imaging data is well established in biomedical research, its primary application has been to observe phenotypes at the tissue or organ level, often using medical imaging techniques such as MRI, CT, and PET. These imaging technologies complement omics-based data in biomedical research because they are helpful for identifying associations between genotype and phenotype, along with functional changes occurring at the tissue level. Single cell imaging can act as an intermediary between these levels. Meanwhile new technologies continue to arrive that can be used to interrogate the genome of single cells and its related omics datasets. As these two areas, single cell imaging and single cell omics, each advance independently with the development of novel techniques, the opportunity to integrate these data types becomes more and more attractive. This review outlines some of the technologies and methods currently available for generating, processing, and analysing single-cell omics- and imaging data, and how they could be integrated to further our understanding of complex biological phenomena like ageing. We include an emphasis on machine learning algorithms because of their ability to identify complex patterns in large multidimensional data.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 516
You Qian ◽  
Fuchun Gong ◽  
Jiguang Li ◽  
Pan Ma ◽  
Hanming Zhu ◽  

Constructing excited-state intermolecular proton transfer (ESIPT-e) fluorophores represents significant challenges due to the harsh requirement of bearing a proton donor-acceptor (D-A) system and their matching proton donating-accepting ability in the same molecule. Herein, we synthesized a new-type ESIPT-e fluorophor (2-APC) using the “four-component one-pot” reaction. By the installing of a cyano-group on pyridine scaffold, the proton donating ability of -NH2 was greatly enhanced, enabling 2-APC to undergo ESIPT-e process. Surprisingly, 2-APC exhibited dual-emissions in protic solvents ethanol and normal fluorescence in aprotic solvents, which is vastly different from that of conventional ESIPT-a dyes. The ESIPT emission can be obviously suppressed by Fe3+ due to the coordination reaction of Fe3+ with the A-D system in 2-APC. From this basis, a highly sensitive and selective method was established using 2-APC as a fluorescent probe, which offers the sensitive detection of Fe3+ ranging from 0 to 13 μM with the detection limit of 7.5 nM. The recovery study of spiked Fe3+ measured by the probe showed satisfactory results (97.2103.4%) with the reasonable RSD ranging from 3.1 to 3.8%. Moreover, 2-APC can also exhibit aggregation-induced effect in poor solvent or solid-state, eliciting strong red fluorescence. 2-APC was also applied to cell-imaging, exhibiting good cell-permeability, biocompatibility and color rendering. This multi-mode emission of 2-APC is significant departure from that of conventional extended p-conjugated systems and ESIPT dyes based on a flat and rigid molecular design. The “one-pot synthesis” strategy for the construction of ESIPT molecules pioneered a new route to achieve tricolor-emissive fluorophores.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 268
Parivash Nouri ◽  
Anja Zimmer ◽  
Stefanie Brüggemann ◽  
Robin Friedrich ◽  
Ralf Kühn ◽  

Advances in the regenerative stem cell field have propelled the generation of tissue-specific cells in the culture dish for subsequent transplantation, drug screening purposes, or the elucidation of disease mechanisms. One major obstacle is the heterogeneity of these cultures, in which the tissue-specific cells of interest usually represent only a fraction of all generated cells. Direct identification of the cells of interest and the ability to specifically isolate these cells in vitro is, thus, highly desirable for these applications. The type VI intermediate filament protein NESTIN is widely used as a marker for neural stem/progenitor cells (NSCs/NPCs) in the developing and adult central and peripheral nervous systems. Applying CRISPR-Cas9 technology, we have introduced a red fluorescent reporter (mScarlet) into the NESTIN (NES) locus of a human induced pluripotent stem cell (hiPSC) line. We describe the generation and characterization of NES-mScarlet reporter hiPSCs and demonstrate that this line is an accurate reporter of NSCs/NPCs during their directed differentiation into human midbrain dopaminergic (mDA) neurons. Furthermore, NES-mScarlet hiPSCs can be used for direct identification during live cell imaging and for flow cytometric analysis and sorting of red fluorescent NSCs/NPCs in this paradigm.

Chenggong Xu ◽  
tian wu ◽  
Lizheng Duan ◽  
Yunhao Zhou ◽  
Yanmei Zhou

Abstract In recent years, the easily synthesized fluorescent probes with good photophysical and sensing properties have attracted widespread attention. Herein, by utilizing the fluorescence regulation effect of electron push-pull effect and the oxidation property of hypochlorite (ClO-) to C=N double bonds, we proposed two intramolecular charge transfer (ICT)-based fluorescent probes with typical aggregation-induced emission (AIE) properties for ClO- detection. The synthesis process of the two probes is very convenient, and both of them can exhibit significant colorimetric and fluorescence changes within 3 min in the presence of ClO-. Moreover, compared with Probe A, the Probe B with near-infrared (NIR) fluorescence centered at 677 nm was successfully applied to ClO- determination in tap water and food samples as well as live cell imaging.

2022 ◽  
Kai-Ren Luo ◽  
Nien-Chen Huang ◽  
Yu-Hsin Chang ◽  
Tien-Shin Yu

Abstract Plants selectively transport mobile mRNAs through intercellular pores, plasmodesmata (PD), to distribute spatial information for synchronizing meristematic differentiation with environmental dynamics. However, how plants recognize and deliver mobile mRNAs to PD remains unknown. Here, by using RNA-live cell imaging, we show that mobile mRNAs hitchhike on organelle trafficking to transport to PD. Perturbed cytoskeleton organization or organelle trafficking severely disrupts the subcellular distribution of mobile mRNAs. We further show that Arabidopsis rotamase cyclophilins (ROCs), which are organelle-localized RNA-binding proteins (RBPs), specifically bind mobile mRNAs on the surface of organelles to direct PD-targeting. Arabidopsis roc quadruple mutants showed reduced in PD-targeting of mobile mRNAs, along with phenotype alterations. ROCs can move intercellularly and form RNA-protein complexes in phloem, suggesting the roles of ROCs in delivery of mobile mRNAs through PD. Our results highlight that an RBP-mediated hitchhiking system is purposely recruited to orient plant-mobile mRNAs to PD for intercellular transport.

Carlo Giovanni Quintanilla ◽  
Wan-Ru Lee ◽  
Jen Liou

Homeostatic regulation of plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2) in receptor-stimulated cells is mediated by the lipid transfer protein Nir2. Nir2 is dynamically recruited to endoplasmic reticulum-plasma membrane (ER-PM) junctions to facilitate replenishment of PM PIP2 hydrolyzed during receptor-mediated signaling. However, our knowledge regarding the activation and sustainment of Nir2-mediated replenishment of PM PIP2 is limited. Here, we describe the functions of Nir1 as a positive regulator of Nir2 and PIP2 homeostasis. In contrast to the family proteins Nir2 and Nir3, Nir1 constitutively localizes at ER-PM junctions. Nir1 potentiates Nir2 targeting to ER-PM junctions during receptor-mediated signaling and is required for efficient PM PIP2 replenishment. Live-cell imaging and biochemical analysis reveal that Nir1 interacts with Nir2 via a region between the FFAT motif and the DDHD domain. Combined, results from this study identify Nir1 as an ER-PM junction localized protein that promotes Nir2 recruitment for PIP2 homeostasis.

2022 ◽  
Peng He ◽  
Kyungtae Lim ◽  
Dawei Sun ◽  
Jan Patrick Pett ◽  
Quitz Jeng ◽  

We present a multiomic cell atlas of human lung development that combines single cell RNA and ATAC sequencing, high throughput spatial transcriptomics and single cell imaging. Coupling single cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial and erythrocyte/leukocyte compartments from 5-22 post conception weeks. We identify new cell states in all compartments. These include developmental-specific secretory progenitors that resemble cells in adult fibrotic lungs and a new subtype of neuroendocrine cell related to human small cell lung cancer; observations which strengthen the connections between development and disease/regeneration. Our datasets are available for the community to download and interact with through our web interface (https://fetal-lung.cellgeni.sanger.ac.uk). Finally, to illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signalling and transcription factor hierarchies which we test using organoid models.

Sign in / Sign up

Export Citation Format

Share Document