triplet energy transfer
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 86)

H-INDEX

45
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Lili Hou ◽  
Wera Larsson ◽  
Stefan Hecht ◽  
Joakim Andreasson ◽  
Bo Albinsson

Abstract Coupling semiconducting nanocrystals (NCs) with organic molecules provides an efficient route to generate and transfer triplet excitons. These excitons can be used to power photochemical transformations such as photoisomerization reactions using low energy radiation. Thus, it is desirable to develop a general approach that can efficiently be used to control photoswitches using all-visible-light aiming at future applications in life- and material sciences. Here, we demonstrate a simple ‘cocktail’ strategy that can achieve all-visible-light switchable diarylethenes (DAEs) through triplet energy transfer from the hybrid of CdS NCs and phenanthrene-3-carboxylic acid, with high photoisomerization efficiency and improved fatigue resistance. The size-tunable excitation energies of CdS NCs make it possible to precisely match the corresponding energy of the relevant DAE photoswitch. We demonstrate reversible all-visible-light photoisomerization of a series of DAE derivatives both in the liquid and solid state, even in the presence of oxygen. Our general strategy is promising for fabrication of all-visible-light activated optoelectronic devices as well as memories, and should in principle be adaptable to photopharmacology.


2021 ◽  
Vol 118 (48) ◽  
pp. e2114729118
Author(s):  
Dongpeng Zhang ◽  
Pengfei Wang ◽  
Junhui Wang ◽  
Yanxiao Li ◽  
Yuguo Xia ◽  
...  

Arising from reduced dielectric screening, excitonic effects should be taken into account in ultrathin two-dimensional photocatalysts, and a significant challenge is achieving nontrivial excitonic regulation. However, the effect of structural modification on the regulation of the excitonic aspect is at a comparatively early stage. Herein, we report unusual effects of surface substitutional doping with Pt on electronic and surface characteristics of atomically thin layers of Bi3O4Br, thereby enhancing the propensity to generate 1O2. Electronically, the introduced Pt impurity states with a lower energy level can trap photoinduced singlet excitons, thus reducing the singlet–triplet energy gap by ∼48% and effectively facilitating the intersystem crossing process for efficient triplet excitons yield. Superficially, the chemisorption state of O2 causes the changes in the magnetic moment (i.e., spin state) of O2 through electron-mediated triplet energy transfer, resulting a spontaneous spin-flip process and highly specific 1O2 generation. These traits exemplify the opportunities that the surface engineering provides a unique strategy for excitonic regulation and will stimulate more research on exciton-triggering photocatalysis for solar energy conversion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tomoya Kusama ◽  
Shuzo Hirata

The suppression of thermally driven triplet deactivation is crucial for efficient persistent room-temperature phosphorescence (pRTP). However, the mechanism by which triplet deactivation occurs in metal-free molecular solids at room temperature (RT) remains unclear. Herein, we report a large pRTP intensity change in a molecular guest that depended on the reversible amorphous–crystal phase change in the molecular host, and we confirm the large contribution made by the rigidity of the host in suppressing intermolecular triplet quenching in the guest. (S)-(−)-2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl ((S)-BINAP) was doped as a guest into a highly purified (S)-bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl ((S)-H8-BINAP) host. It was possible to reversibly form the amorphous and crystalline states of the solid by cooling to RT from various temperatures. The RTP yield (Φp) originating from the (S)-BINAP was 6.7% in the crystalline state of the (S)-H8-BINAP host, whereas it decreased to 0.31% in the amorphous state. Arrhenius plots showing the rate of nonradiative deactivation from the lowest triplet excited state (T1) of the amorphous and crystalline solids indicated that the large difference in Φp between the crystalline and amorphous states was mostly due to the discrepancy in the magnitude of quenching of intermolecular triplet energy transfer from the (S)-BINAP guest to the (S)-H8-BINAP host. Controlled analyses of the T1 energy of the guest and host, and of the reorganization energy of the intermolecular triplet energy transfer from the guest to the host, confirmed that the large difference in intermolecular triplet quenching was due to the discrepancy in the magnitude of the diffusion constant of the (S)-H8-BINAP host between its amorphous and crystalline states. Quantification of both the T1 energy and the diffusion constant of molecules used in solid materials is crucial for a meaningful discussion of the intermolecular triplet deactivation of various metal-free solid materials.


2021 ◽  
Author(s):  
Vibin Abraham ◽  
Nicholas Mayhall

Understanding the separation of the correlated triplet pair state 1(TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction (K) between the triplets which leads to the spin splitting of the biexciton state into 1(TT),3(TT) and 5(TT) states, and (ii) the triplet-triplet energy transfer integral (t) which enables the formation of the spatially separated (but still spin entangled) state 1(T...T). We develop a simple ab initio technique to compute both the biexciton exchange (K) and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favourable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.


2021 ◽  
pp. 139132
Author(s):  
Wenyuan Zhao ◽  
Ruiling Zhang ◽  
Daoyuan Zheng ◽  
Sijia Wang ◽  
Siping Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document