scholarly journals Biophysical Studies on Protein Aggregation and Amyloid Fibril Formation

2012 ◽  
Vol 102 (3) ◽  
pp. 443a
Author(s):  
Mily Bhattacharya ◽  
Neha Jain ◽  
Priyanka Dogra ◽  
Soumyadyuti Samai ◽  
Smita Patil ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Samra Hasanbašić ◽  
Alma Jahić ◽  
Selma Berbić ◽  
Magda Tušek Žnidarič ◽  
Eva Žerovnik

Amyloid fibril formation is a shared property of all proteins; therefore, model proteins can be used to study this process. We measured protein aggregation of the model amyloid-forming protein stefin B in the presence and absence of several antioxidants. Amyloid fibril formation by stefin B was routinely induced at pH 5 and 10% TFE, at room temperature. The effects of antioxidants NAC, vitamin C, vitamin E, and the three polyphenols resveratrol, quercetin, and curcumin on the kinetics of fibril formation were followed using ThT fluorescence. Concomitantly, the morphology and amount of the aggregates and fibrils were checked by transmission electron microscopy (TEM). The concentration of the antioxidants was varied, and it was observed that different modes of action apply at low or high concentrations relative to the binding constant. In order to obtain more insight into the possible mode of binding, docking of NAC, vitamin C, and all three polyphenols was done to the monomeric form of stefin B.


2003 ◽  
Vol 334 (1) ◽  
pp. 129-141 ◽  
Author(s):  
Patrizia Polverino de Laureto ◽  
Niccolò Taddei ◽  
Erica Frare ◽  
Cristina Capanni ◽  
Silvia Costantini ◽  
...  

Nanoscale ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 4793-4806 ◽  
Author(s):  
Giorgia Brancolini ◽  
Maria Celeste Maschio ◽  
Cristina Cantarutti ◽  
Alessandra Corazza ◽  
Federico Fogolari ◽  
...  

Mechanism for how citrate covered gold NP influence protein aggregation and thus fibril formation for the highly amyloidogenic variants D76N and ΔN6 β2-microglobulin.


2006 ◽  
Vol 39 (2) ◽  
pp. 167-201 ◽  
Author(s):  
Hilal A. Lashuel ◽  
Peter T. Lansbury

1. Introduction 22. What is the significance of the shared structural properties of disease-associated protein fibrils? 32.1 Mechanism of amyloid fibril formation in vitro 62.1.1 In vitro fibril formation involves transient population of ordered aggregates of intermediate stability, or protofibrils 63. Toxic properties of protofibrils 73.1 Protofibrils, rather than fibrils, are likely to be pathogenic 73.2 The toxic protofibril may be a mixture of related species 83.3 Morphological similarities of protofibrils suggest a common mechanism of toxicity 93.4 Are the amyloid diseases a subset of a much larger class of previously unrecognized protofibril diseases? 93.5 Fibrils, in the form of aggresomes, may function to sequester toxic protofibrils 94. Amyloid pores, a common structural link among protein aggregation neurodegenerative diseases 104.1 Mechanistic studies of amyloid fibril formation reveal common features, including pore-like protofibrils 104.1.1 Amyloid-β (Aβ) (Alzheimer's disease) 104.1.2 α-Synuclein (PD and diffuse Lewy body disease) 124.1.3 ABri (familial British dementia) 134.1.4 Superoxide dismutase-1 (amyotrophic lateral sclerosis) 134.1.5 Prion protein (Creutzfeldt–Jakob disease, bovine spongiform encephalopathy, etc.) 144.1.6 Huntingtin (Huntington's disease) 144.2 Amyloidogenic proteins that are not linked to disease also from pore-like protofibrils 154.3 Amyloid proteins form non-fibrillar aggregates that have properties of protein channels or pores 154.3.1 Aβ ‘channels’ 154.3.2 α-Synuclein ‘pores’ 164.3.3 PrP ‘channels’ 164.3.4 Polyglutamine ‘channels’ 174.4 Nature uses β-strand-mediated protein oligomerization to construct pore-forming toxins 175. Mechanisms of protofibril induced toxicity in protein aggregation diseases 195.1 The amyloid pore can explain the age-association and cell-type selectivity of the neurodegenerative diseases 195.2 Protofibrils may promote their own accumulation by inhibiting the proteasome 206. Testing the amyloid pore hypothesis by attempting to disprove it 217. Acknowledgments 228. References 22Protein fibrillization is implicated in the pathogenesis of most, if not all, age-associated neurodegenerative diseases, but the mechanism(s) by which it triggers neuronal death is unknown. Reductionist in vitro studies suggest that the amyloid protofibril may be the toxic species and that it may amplify itself by inhibiting proteasome-dependent protein degradation. Although its pathogenic target has not been identified, the properties of the protofibril suggest that neurons could be killed by unregulated membrane permeabilization, possibly by a type of protofibril referred to here as the ‘amyloid pore’. The purpose of this review is to summarize the existing supportive circumstantial evidence and to stimulate further studies designed to test the validity of this hypothesis.


2004 ◽  
Vol 17 (5) ◽  
pp. 456-464 ◽  
Author(s):  
Larissa A. Munishkina ◽  
Elisa M. Cooper ◽  
Vladimir N. Uversky ◽  
Anthony L. Fink

Author(s):  
T. Shirahama ◽  
M. Skinner ◽  
A.S. Cohen

A1thought the mechanisms of amyloidogenesis have not been entirely clarified, proteolysis of the parent proteins may be one of the important steps in the amyloid fibril formation. Recently, we reported that "dense fibrillar inclusions" (DFI), which had the characteristics of lysosomes and contained organized fibrillar profiles as well, were observed in the reticuloendothelial cells in close association with the foci of new amyloid deposits. We considered the findings as evidence for the involvement of lysosomal system in amyloid fibril formation (l). In the present study, we attempted to determine the identity of the contents of the DFI by the use of antisera against the amyloid protein (AA) and an immuno-electron microscopic technique.Amyloidosis was induced in CBA/J mice by daily injections of casein (l). AA was isolated from amyloid-laden spleens by gel filtration and antibody to it was produced in rabbits (2). For immunocytochemistry, the unlabeled antibody enzyme method (3) was employed.


Sign in / Sign up

Export Citation Format

Share Document