primary sequence
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 67)

H-INDEX

62
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Christopher A. Waudby ◽  
Saul Alvarez-Teijeiro ◽  
Simon Suppinger ◽  
Paul R. Brown ◽  
Axel Behrens ◽  
...  

Protein phosphorylation is a major regulatory mechanism of cellular signalling. The c-Jun proto-oncoprotein is phosphorylated at four residues within its transactivation domain (TAD) by the JNK family kinases, but the functional significance of c-Jun multisite phosphorylation has remained elusive. Here we show that c-Jun phosphorylation by JNK exhibits a defined temporal kinetics, with serine63 and serine73 being phosphorylated more rapidly than threonine91 and threonine93. We identified the positioning of the phosphorylation sites relative to the kinase docking motif, and their primary sequence, as the main factors controlling phosphorylation kinetics. Functional analysis revealed three c-Jun phosphorylation states: unphosphorylated c-Jun recruits the Mbd3 repressor, serine63/73 doubly-phosphorylated c-Jun binds to the Tcf4 co-activator, whereas the fully phosphorylated form disfavours Tcf4 binding attenuating JNK signalling. Thus, c-Jun phosphorylation encodes multiple functional states that drive a complex signalling response from a single JNK input.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2204
Author(s):  
Manjula Mischler ◽  
Gregor Meyers

The pestivirus classical swine fever virus (CSFV) represents one of the most important pathogens of swine. Its virulence is dependent on the RNase activity of the essential structural glycoprotein Erns that uses an amphipathic helix as a membrane anchor and forms homodimers via disulfide bonds employing cysteine 171. Dimerization is not necessary for CSFV viability but for its virulence. Mutant Erns proteins lacking cysteine 171 are still able to interact transiently as shown in crosslink experiments. Deletion analysis did not reveal the presence of a primary sequence-defined contact surface essential for dimerization, but indicated a general importance of an intact ectodomain for efficient establishment of dimers. Pseudoreverted viruses reisolated in earlier experiments from pigs with mutations Cys171Ser/Ser209Cys exhibited partially restored virulence and restoration of the ability to form Erns homodimers. Dimer formation was also observed for experimentally mutated proteins, in which other amino acids at different positions of the membrane anchor region of Erns were replaced by cysteine. However, with one exception of two very closely located residues, the formation of disulfide-linked dimers was only observed for cysteine residues located at the same position of the helix.


2021 ◽  
Author(s):  
Casey Vieni ◽  
Nicolas Coudray ◽  
Georgia L Isom ◽  
Gira Bhabha ◽  
Damian Charles Ekiert

LetB is a tunnel-forming protein found in the cell envelope of some double-membraned bacteria, and is thought to be important for the transport of lipids between the inner and outer membranes. In Escherichia coli the LetB tunnel is formed from a stack of seven rings (Ring1 - Ring7), in which each ring is composed of a homo-hexameric assembly of MCE domains. The primary sequence of each MCE domain of the LetB protein is substantially divergent from the others, making each MCE ring unique in nature. The role of each MCE domain and how it contributes to the function of LetB is not well understood. Here we probed the importance of each MCE ring for the function of LetB, using a combination of bacterial growth assays and cryo-EM. Surprisingly, we find that ΔRing3 and ΔRing6 mutants, in which Ring3 and Ring6 have been deleted, confer increased resistance to membrane perturbing agents. Specific mutations in the pore-lining loops of Ring6 similarly confer increased resistance. A cryo-EM structure of the ΔRing6 mutant shows that despite the absence of Ring6, which leads to a shorter assembly, the overall architecture is maintained, highlighting the modular nature of MCE proteins. Previous work has shown that Ring6 is dynamic and in its closed state, may restrict the passage of substrate through the tunnel. Our work suggests that removal of Ring6 may relieve this restriction. The deletion of Ring6 combined with mutations in the pore-lining loops leads to a model for the tunnel gating mechanism of LetB. Together, these results provide insight into the functional roles of individual MCE domains and pore-lining loops in the LetB protein.


2021 ◽  
pp. 12-16
Author(s):  
Sheikh Arslan Sehgal ◽  
Rana Adnan Tahir ◽  
Muhammad Waqas

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Austin M. Baggetta ◽  
Douglas A. Bayliss ◽  
Gábor Czirják ◽  
Péter Enyedi ◽  
Steve A.N. Goldstein ◽  
...  

The 4TM family of K channels mediate many of the background potassium currents observed in native cells. They are open across the physiological voltage-range and are regulated by a wide array of neurotransmitters and biochemical mediators. The pore-forming α-subunit contains two pore loop (P) domains and two subunits assemble to form one ion conduction pathway lined by four P domains. It is important to note that single channels do not have two pores but that each subunit has two P domains in its primary sequence; hence the name two-pore domain, or K2P channels (and not two-pore channels). Some of the K2P subunits can form heterodimers across subfamilies (e.g. K2P3.1 with K2P9.1). The nomenclature of 4TM K channels in the literature is still a mixture of IUPHAR and common names. The suggested division into subfamilies, described in the More detailed introduction, is based on similarities in both structural and functional properties within subfamilies and this explains the "common abbreviation" nomenclature in the tables below.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Duy Nguyen ◽  
Nicolas Buisine ◽  
Olivier Fayol ◽  
Annemieke A. Michels ◽  
Olivier Bensaude ◽  
...  

Abstract Background The 7SK small nuclear RNA (snRNA) found in most metazoans is a key regulator of P-TEFb which in turn regulates RNA polymerase II elongation. Although its primary sequence varies in protostomes, its secondary structure and function are conserved across evolutionary distant taxa. Results Here, we describe a novel ncRNA sharing many features characteristic of 7SK RNAs, in D. melanogaster. We examined the structure of the corresponding gene and determined the expression profiles of the encoded RNA, called snRNA:7SK:94F, during development. It is probably produced from the transcription of a lncRNA which is processed into a mature snRNA. We also addressed its biological function and we show that, like dm7SK, this alternative 7SK interacts in vivo with the different partners of the P-TEFb complex, i.e. HEXIM, LARP7 and Cyclin T. This novel RNA is widely expressed across tissues. Conclusion We propose that two distinct 7SK genes might contribute to the formation of the 7SK snRNP complex in D. melanogaster.


2021 ◽  
Author(s):  
Boris Slobodin ◽  
Urmila Sehrawat ◽  
Anastasia Lev ◽  
Ariel Ogran ◽  
Davide Fraticelli ◽  
...  

Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 exhibits an IRES-like activity and promotes expression of NSP1 in an eIF4E-independent and Torin-1 resistant manner. Upon expression, NSP1 enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin-1. The combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1129
Author(s):  
Anna Solovyeva ◽  
Ivan Levakin ◽  
Evgeny Zorin ◽  
Leonid Adonin ◽  
Yuri Khotimchenko ◽  
...  

Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.


2021 ◽  
Author(s):  
Douglas R Houston ◽  
Jane G Hanna ◽  
J Constance Lathe ◽  
Stephen G Hillier ◽  
Richard Lathe

Ligand-activated nuclear receptors (NRs) including steroid receptors orchestrate development, growth, and reproduction across all animal lifeforms - the Metazoa - but how NRs evolved remains mysterious. Given the universality of terpenoids - including steroids and retinoids - as activating NR ligands, we asked if NRs might have evolved from enzymes that catalyze terpene synthesis and metabolism. We provide evidence suggesting that NRs are a sub-branch of the terpene synthase (TS) enzyme superfamily. Based on over ten thousand 3D structural comparisons, backed up by multiple primary sequence alignments and mapping of ligand-contacting residues, we report that the NR ligand-binding domain and TS enzymes share a conserved core of seven α-helical segments. Primary sequence comparisons reveal potential amino acid sequence similarities between NRs and the subfamily of cis-isoprene transferases, in particular dehydrodolichyl pyrophosphate synthase (DHDPPS) and its obligate partner, NUS1/NOGOB receptor. Our results suggest that a ligand-gated receptor may have arisen from an enzyme antecedent, and thus resolve the long-standing debate about whether the ancestral NR was unliganded. This would also explain aspects of NR ligand 'promiscuity', with implications for the development of pharmaceuticals targeting NRs and TS enzymes.


Sign in / Sign up

Export Citation Format

Share Document