scholarly journals Super-Resolution by Feedback Imaging: Mechanisms of Translocation through the Nuclear Pore Complex

2013 ◽  
Vol 104 (2) ◽  
pp. 120a
Author(s):  
Francesco Cardarelli ◽  
Luca Lanzano ◽  
Enrico Gratton
2017 ◽  
Vol 130 (7) ◽  
pp. 1299-1306 ◽  
Author(s):  
Jiong Ma ◽  
Joseph M. Kelich ◽  
Samuel L. Junod ◽  
Weidong Yang

2014 ◽  
Vol 127 (20) ◽  
pp. 4351-4355 ◽  
Author(s):  
Anna Löschberger ◽  
Christian Franke ◽  
Georg Krohne ◽  
Sebastian van de Linde ◽  
Markus Sauer

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Julien Sellés ◽  
May Penrad-Mobayed ◽  
Cyndélia Guillaume ◽  
Alica Fuger ◽  
Loïc Auvray ◽  
...  

Author(s):  
Alyssa N Coyne ◽  
Benjamin L Zaepfel ◽  
Lindsey Hayes ◽  
Boris Fitchman ◽  
Yuval Salzberg ◽  
...  

AbstractNucleocytoplasmic transport, controlled by the nuclear pore complex, has recently emerged as a pathomechanism underlying neurodegenerative diseases including C9orf72 ALS/FTD. However, little is known about the underlying molecular events and the underlying biology in human neurons. Using super resolution structured illumination microscopy of twenty three nucleoporins in nuclei from C9orf72 iPSC derived neurons and postmortem human tissue we identify a unique subset of eight nucleoporins lost from human neuronal nuclei. POM121, an integral transmembrane nucleoporin, appears to coordinate the composition of the nucleoporins within human neuronal nuclei ultimately impacting nucleocytoplasmic transport, and subsequent cellular toxicity in C9orf72 iPSNs. These data suggest that POM121 is a critical nucleoporin in the maintenance of the nuclear localization of specific nucleoporins in human neurons. Moreover, loss of nuclear POM121, as a result of expanded C9orf72 ALS/FTD repeat RNA, initiates a pathological cascade affecting nucleoporin composition within neuronal nuclei, nuclear pore complex function, and overall downstream neuronal survival.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Tino Pleiner ◽  
Mark Bates ◽  
Sergei Trakhanov ◽  
Chung-Tien Lee ◽  
Jan Erik Schliep ◽  
...  

Nanobodies are single-domain antibodies of camelid origin. We generated nanobodies against the vertebrate nuclear pore complex (NPC) and used them in STORM imaging to locate individual NPC proteins with <2 nm epitope-label displacement. For this, we introduced cysteines at specific positions in the nanobody sequence and labeled the resulting proteins with fluorophore-maleimides. As nanobodies are normally stabilized by disulfide-bonded cysteines, this appears counterintuitive. Yet, our analysis showed that this caused no folding problems. Compared to traditional NHS ester-labeling of lysines, the cysteine-maleimide strategy resulted in far less background in fluorescence imaging, it better preserved epitope recognition and it is site-specific. We also devised a rapid epitope-mapping strategy, which relies on crosslinking mass spectrometry and the introduced ectopic cysteines. Finally, we used different anti-nucleoporin nanobodies to purify the major NPC building blocks – each in a single step, with native elution and, as demonstrated, in excellent quality for structural analysis by electron microscopy. The presented strategies are applicable to any nanobody and nanobody-target.


Author(s):  
G. G. Maul

The chromatin of eukaryotic cells is separated from the cytoplasm by a double membrane. One obvious structural specialization of the nuclear membrane is the presence of pores which have been implicated to facilitate the selective nucleocytoplasmic exchange of a variety of large molecules. Thus, the function of nuclear pores has mainly been regarded to be a passive one. Non-membranous diaphragms, radiating fibers, central rings, and other pore-associated structures were thought to play a role in the selective filter function of the nuclear pore complex. Evidence will be presented that suggests that the nuclear pore is a dynamic structure which is non-randomly distributed and can be formed during interphase, and that a close relationship exists between chromatin and the membranous part of the nuclear pore complex.Octagonality of the nuclear pore complex has been confirmed by a variety of techniques. Using the freeze-etching technique, it was possible to show that the membranous part of the pore complex has an eight-sided outline in human melanoma cells in vitro. Fibers which traverse the pore proper at its corners are continuous and indistinguishable from chromatin at the nucleoplasmic side, as seen in conventionally fixed and sectioned material. Chromatin can be seen in octagonal outline if serial sections are analyzed which are parallel but do not include nuclear membranes (Fig. 1). It is concluded that the shape of the pore rim is due to fibrous material traversing the pore, and may not have any functional significance. In many pores one can recognize a central ring with eight fibers radiating to the corners of the pore rim. Such a structural arrangement is also found to connect eight ribosomes at the nuclear membrane.


Author(s):  
N. Panté ◽  
M. Jarnik ◽  
E. Heitlinger ◽  
U. Aebi

The nuclear pore complex (NPC) is a ∼120 MD supramolecular machine implicated in nucleocytoplasmic transport, that is embedded in the double-membraned nuclear envelope (NE). The basic framework of the ∼120 nm diameter NPC consists of a 32 MD cytoplasmic ring, a 66 MD ‘plug-spoke’ assembly, and a 21 MD nuclear ring. The ‘central plug’ seen in en face views of the NPC reveals a rather variable appearance indicating that it is a dynamic structure. Projecting from the cytoplasmic ring are 8 short, twisted filaments (Fig. 1a), whereas the nuclear ring is topped with a ‘fishtrap’ made of 8 thin filaments that join distally to form a fragile, 30-50 nm distal diameter ring centered above the NPC proper (Fig. 1b). While the cytoplasmic filaments are sensitive to proteases, they as well as the nuclear fishtraps are resistant to RNase treatment. Removal of divalent cations destabilizes the distal rings and thereby opens the fishtraps, addition causes them to reform. Protruding from the tips of the radial spokes into perinuclear space are ‘knobs’ that might represent the large lumenal domain of gp210, a membrane-spanning glycoprotein (Fig. 1c) which, in turn, may play a topogenic role in membrane folding and/or act as a membrane-anchoring site for the NPC. The lectin wheat germ agglutinin (WGA) which is known to recognize the ‘nucleoporins’, a family of glycoproteins having O-linked N-acetyl-glucosamine, is found in two locations on the NPC (Fig. 1. d-f): (i) whereas the cytoplasmic filaments appear unlabelled (Fig. 1d&e), WGA-gold labels sites between the central plug and the cytoplasmic ring (Fig. le; i.e., at a radius of 25-35 nm), and (ii) it decorates the distal ring of the nuclear fishtraps (Fig. 1, d&f; arrowheads).


Sign in / Sign up

Export Citation Format

Share Document