3d tomography
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 31)

H-INDEX

17
(FIVE YEARS 3)

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1936
Author(s):  
Katja Andrina Kravanja ◽  
Matjaž Finšgar

The development of bioactive coatings for orthopedic implants has been of great interest in recent years in order to achieve both early- and long-term osseointegration. Numerous bioactive materials have been investigated for this purpose, along with loading coatings with therapeutic agents (active compounds) that are released into the surrounding media in a controlled manner after surgery. This review initially focuses on the importance and usefulness of characterization techniques for bioactive coatings, allowing the detailed evaluation of coating properties and further improvements. Various advanced analytical techniques that have been used to characterize the structure, interactions, and morphology of the designed bioactive coatings are comprehensively described by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 3D tomography, quartz crystal microbalance (QCM), coating adhesion, and contact angle (CA) measurements. Secondly, the design of controlled-release systems, the determination of drug release kinetics, and recent advances in drug release from bioactive coatings are addressed as the evaluation thereof is crucial for improving the synthesis parameters in designing optimal bioactive coatings.


2021 ◽  
Vol 936 (1) ◽  
pp. 012022
Author(s):  
R W Rahayu ◽  
M N Cahyadi ◽  
B Muslim ◽  
I M Anjasmara ◽  
E Y Handoko ◽  
...  

Abstract Global Navigation Satellite System (GNSS) is a navigation system that uses satellite signals to determine its position, which consists of several satellites arranged in a constellation system. GNSS transmits signals to receivers on Earth. The GNSS receiver determines the user’s position, speed, and time by processing the signals transmitted by the satellites. The initial purpose of launching the GNSS was for navigation purposes, but along with its development, GNSS can be used for the purposes of observing deformation of the earth’s crust and in studying the atmosphere. The delayed wave data when passing through the ionosphere can be used to obtain Total Electron Content (TEC) values which then used to study ionospheric disturbances. Ionospheric disturbances are caused by various phenomena, the most common one is the ionospheric disturbances caused by the induction of acoustic and gravitational waves excited by co seismic crustal motions from large earthquakes. Ionospheric disturbances that happened before an earthquake are called Pre-seismic Ionospheric Disturbances and those that occur after an earthquake are called Co-seismic Ionospheric Disturbances (CID). Most studies of ionospheric disturbances still provide information on the timing and value of TEC anomalies in 2D form. Therefore, in this study, a 3D ionosphere profile modelling using computed 3D tomography will be carried out. The 3D information provided is in the form of time, ionosphere altitude and TEC anomaly value by utilizing GNSS data. The TEC anomaly value is obtained from the calculation of linear combination of the ionosphere. This study aims to obtain a spatial and temporal analysis of the CID caused by the West Sumatra Earthquake on March 2, 2016.


2021 ◽  
Vol 8 ◽  
Author(s):  
João P. C. Bertoldo ◽  
Etienne Decencière ◽  
David Ryckelynck ◽  
Henry Proudhon

X-Ray Computed Tomography (XCT) techniques have evolved to a point that high-resolution data can be acquired so fast that classic segmentation methods are prohibitively cumbersome, demanding automated data pipelines capable of dealing with non-trivial 3D images. Meanwhile, deep learning has demonstrated success in many image processing tasks, including materials science applications, showing a promising alternative for a human-free segmentation pipeline. However, the rapidly increasing number of available architectures can be a serious drag to the wide adoption of this type of models by the end user. In this paper a modular interpretation of U-Net (Modular U-Net) is proposed with a parametrized architecture that can be easily tuned to optimize it. As an example, the model is trained to segment 3D tomography images of a three-phased glass fiber-reinforced Polyamide 66. We compare 2D and 3D versions of our model, finding that the former is slightly better than the latter. We observe that human-comparable results can be achievied even with only 13 annotated slices and using a shallow U-Net yields better results than a deeper one. As a consequence, neural networks show indeed a promising venue to automate XCT data processing pipelines needing no human, adhoc intervention.


2021 ◽  
Author(s):  
◽  
Nicolas Eduard Alype Brikke

<p>The three-dimensional (3D) evolution of the Australian-Pacifi c late boundary in the central South Island of New Zealand is investigated by analysing seismic data from the South Island GeopHysical Transect (SIGHT) project and by using a novel 3D tomography inversion method, FMTOMO. A 380 km-long, 350 km-wide and 56 km-deep 3D tomography image of the P-wave velocity structure and interface geometry of the crust and upper-mantle is constructed by inverting for 164,048 traveltime picks. The picks are both coincident (in-line) and oblique (cross-line) to the survey geometry. The traveltime picks and station elevations were static corrected and reduced to basement level, respectively, to eliminate the highly variable sedimentary component of the inversion process. Synthetic testing of the model space was carried out to help the interpretation of the solution model features. Some model features are consistent with previous results. Usual crustal velocities (5.5 km/s close to the surface and 6.3 km/s at the bottom of the crust) are found at distal ends of the collision zone. Lower velocities (5.7 km/s) intrude the mid-crust of the Australian plate to depths of about 20 km, which is consistent with the downward  flexure of the Australian plate. A low velocity zone (5.9 - 6.1 km/s) is situated to the southeast of the Alpine fault, which is consistent with the Alpine fault low velocity zone. Furthermore, a high-velocity body (6.3 km/s) is observed in the top 10 km of the upper-crust immediately above the thickened crust between the west coast of the South Island and the Main Divide of the Southern Alps. This body is interpreted as a drier, more rigid body of schist. A zone of low velocity (5.8 km/s reaching 8 km depth) is observed immediately to the southeast of the aforementioned high velocity body. The feature is interpreted as a back-shearing faulting structure through which fluid escape towards the surface. A flexural analysis of an apparent  flexure profile of the Australian Plate along SIGHT line 01 yielded a  flexural parameter, a, of 89 km, an elastic thickness, Te, of 14 km and a  flexural rigidity, D, of 1.5 : 10^(23) N.m. These results are consistent with results of a  flexural analysis of SIGHT line 02W [Harrison 1999]. The following features are derived from the solution model. An apparent gradient in uppermantle anisotropy is observed with seismic velocities increasing towards the south of the model. Also, the geometry of the Mohorovicic discontinuity is apparently smooth between the two main SIGHT transects. The tomography method used in this project proves to be complementary to other coarser-scale and finer-scale seismic studies of the region in that it brings out features that were not seen by them. Notwithstanding that the interface inversion process remains to be perfected in the software, the velocity inversion produced a satisfactory solution model.</p>


2021 ◽  
Author(s):  
◽  
Nicolas Eduard Alype Brikke

<p>The three-dimensional (3D) evolution of the Australian-Pacifi c late boundary in the central South Island of New Zealand is investigated by analysing seismic data from the South Island GeopHysical Transect (SIGHT) project and by using a novel 3D tomography inversion method, FMTOMO. A 380 km-long, 350 km-wide and 56 km-deep 3D tomography image of the P-wave velocity structure and interface geometry of the crust and upper-mantle is constructed by inverting for 164,048 traveltime picks. The picks are both coincident (in-line) and oblique (cross-line) to the survey geometry. The traveltime picks and station elevations were static corrected and reduced to basement level, respectively, to eliminate the highly variable sedimentary component of the inversion process. Synthetic testing of the model space was carried out to help the interpretation of the solution model features. Some model features are consistent with previous results. Usual crustal velocities (5.5 km/s close to the surface and 6.3 km/s at the bottom of the crust) are found at distal ends of the collision zone. Lower velocities (5.7 km/s) intrude the mid-crust of the Australian plate to depths of about 20 km, which is consistent with the downward  flexure of the Australian plate. A low velocity zone (5.9 - 6.1 km/s) is situated to the southeast of the Alpine fault, which is consistent with the Alpine fault low velocity zone. Furthermore, a high-velocity body (6.3 km/s) is observed in the top 10 km of the upper-crust immediately above the thickened crust between the west coast of the South Island and the Main Divide of the Southern Alps. This body is interpreted as a drier, more rigid body of schist. A zone of low velocity (5.8 km/s reaching 8 km depth) is observed immediately to the southeast of the aforementioned high velocity body. The feature is interpreted as a back-shearing faulting structure through which fluid escape towards the surface. A flexural analysis of an apparent  flexure profile of the Australian Plate along SIGHT line 01 yielded a  flexural parameter, a, of 89 km, an elastic thickness, Te, of 14 km and a  flexural rigidity, D, of 1.5 : 10^(23) N.m. These results are consistent with results of a  flexural analysis of SIGHT line 02W [Harrison 1999]. The following features are derived from the solution model. An apparent gradient in uppermantle anisotropy is observed with seismic velocities increasing towards the south of the model. Also, the geometry of the Mohorovicic discontinuity is apparently smooth between the two main SIGHT transects. The tomography method used in this project proves to be complementary to other coarser-scale and finer-scale seismic studies of the region in that it brings out features that were not seen by them. Notwithstanding that the interface inversion process remains to be perfected in the software, the velocity inversion produced a satisfactory solution model.</p>


2021 ◽  
Author(s):  
Allard Hendriksen ◽  
Dirk Schut ◽  
Willem Jan Palenstijn ◽  
Nicola Viganò ◽  
Jisoo Kim ◽  
...  
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhe Wang ◽  
Vittorio Bianco ◽  
Daniele Pirone ◽  
Pasquale Memmolo ◽  
Massimiliano Maria Villone ◽  
...  

AbstractSingle-cell phase-contrast tomography promises to become decisive for studying 3D intracellular structures in biology. It involves probing cells with light at wide angles, which unfortunately requires complex systems. Here we show an intriguing concept based on an inherent natural process for plants biology, i.e., dehydration, allowing us to easily obtain 3D-tomography of onion-epidermal cells’ nuclei. In fact, the loss of water reduces the turgor pressure and we recognize it induces significant rotation of cells’ nuclei. Thanks to the holographic focusing flexibility and an ad-hoc angles’ tracking algorithm, we combine different phase-contrast views of the nuclei to retrieve their 3D refractive index distribution. Nucleolus identification capability and a strategy for measuring morphology, dry mass, biovolume, and refractive index statistics are reported and discussed. This new concept could revolutionize the investigation in plant biology by enabling dynamic 3D quantitative and label-free analysis at sub-nuclear level using a conventional holographic setup.


2021 ◽  
Author(s):  
Stuart R. Stock ◽  
P. E. Morse ◽  
M. K. Stock ◽  
K. C. James ◽  
L. J. Natanson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document