scholarly journals Protein Folding Intermediates Probed by Ensemble of their Transient Stiffnesses in Single-Molecule Force-Quenched AFM

2013 ◽  
Vol 104 (2) ◽  
pp. 167a
Author(s):  
Katarzyna Malek ◽  
Robert Szoszkiewicz
2013 ◽  
Vol 4 (6) ◽  
pp. 597-604 ◽  
Author(s):  
Yuji Hidaka ◽  
Shigeru Shimamoto

AbstractDisulfide-containing proteins are ideal models for studies of protein folding as the folding intermediates can be observed, trapped, and separated by HPLC during the folding reaction. However, regulating or analyzing the structures of folding intermediates of peptides and proteins continues to be a difficult problem. Recently, the development of several techniques in peptide chemistry and biotechnology has resulted in the availability of some powerful tools for studying protein folding in the context of the structural analysis of native, mutant proteins, and folding intermediates. In this review, recent developments in the field of disulfide-coupled peptide and protein folding are discussed, from the viewpoint of chemical and biotechnological methods, such as analytical methods for the detection of disulfide pairings, chemical methods for disulfide bond formation between the defined Cys residues, and applications of diselenide bonds for the regulation of disulfide-coupled peptide and protein folding.


2018 ◽  
Vol 430 (4) ◽  
pp. 424-437 ◽  
Author(s):  
Robert E. Jefferson ◽  
Duyoung Min ◽  
Karolina Corin ◽  
Jing Yang Wang ◽  
James U. Bowie

2004 ◽  
Vol 344 (1) ◽  
pp. 239-255 ◽  
Author(s):  
Luis A. Campos ◽  
Marta Bueno ◽  
Jon Lopez-Llano ◽  
María Ángeles Jiménez ◽  
Javier Sancho

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiuqi Chen ◽  
Nandakumar Rajasekaran ◽  
Kaixian Liu ◽  
Christian M. Kaiser

Abstract Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein.


Sign in / Sign up

Export Citation Format

Share Document