molten globule
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 61)

H-INDEX

79
(FIVE YEARS 6)

Author(s):  
Ricardo Cerón ◽  
Mariana Peimbert ◽  
Arturo Rojo-Domínguez ◽  
Hugo Nájera

2021 ◽  
Vol 9 (11) ◽  
pp. 2206
Author(s):  
Shuowei Cai ◽  
Raj Kumar ◽  
Bal Ram Singh

Gram-positive bacteria are ancient organisms. Many bacteria, including Gram-positive bacteria, produce toxins to manipulate the host, leading to various diseases. While the targets of Gram-positive bacterial toxins are diverse, many of those toxins use a similar mechanism to invade host cells and exert their functions. Clostridial neurotoxins produced by Clostridial tetani and Clostridial botulinum provide a classical example to illustrate the structure–function relationship of bacterial toxins. Here, we critically review the recent progress of the structure–function relationship of clostridial neurotoxins, including the diversity of the clostridial neurotoxins, the mode of actions, and the flexible structures required for the activation of toxins. The mechanism clostridial neurotoxins use for triggering their activity is shared with many other Gram-positive bacterial toxins, especially molten globule-type structures. This review also summarizes the implications of the molten globule-type flexible structures to other Gram-positive bacterial toxins. Understanding these highly dynamic flexible structures in solution and their role in the function of bacterial toxins not only fills in the missing link of the high-resolution structures from X-ray crystallography but also provides vital information for better designing antidotes against those toxins.


2021 ◽  
Author(s):  
Balamurugan Dhayalan ◽  
Yen-Shan Chen ◽  
Yanwu Yang ◽  
Mark Jarosinski ◽  
Deepak Chatterjee ◽  
...  

Diverse heterozygous mutations in the human insulin gene cause a monogenic diabetes mellitus (DM) syndrome due to toxic misfolding of the variant proinsulin. Whereas mutations that add or remove cysteines (thereby leading to an odd number of thiol groups) generally lead to neonatal-onset DM, non-Cys-related mutations can be associated with a broad range of ages of onset. Here, we compare two mutations at a conserved position in the central B-chain α-helix: one neonatal in DM onset (ValB18→Gly) and the other with onset delayed until adolescence (AlaB18). The substitutions were introduced within a 49-residue single-chain insulin precursor optimized for folding efficiency (Zaykov, A., et al. ACS Chem. Biol. 9, 683-91 (2014)). Although mutations are each unfavorable, GlyB18 (a) more markedly perturbs DesDi folding efficiency in vitro than does AlaB18 and (b) more severely induces endoplasmic reticulum (ER) stress in cell-based studies of the respective proinsulin variants. In corresponding two-chain hormone analogs, GlyB18 more markedly perturbs structure, function and thermodynamic stability than does AlaB18. Indeed, the GlyB18-insulin analog forms a molten globule with attenuated α-helix content whereas the AlaA18 analog retains a nativelike cooperative structure with reduced free energy of unfolding (ΔΔGu 1.2(±0.2) kcal/mole relative to ValB18 parent). We propose that mutations at B18 variably impede nascent pairing of CysB19 and CysA20 to an extent correlated with perturbed core packing once native disulfide pairing is achieved. Differences in age of disease onset (neonatal or adolescent) reflect relative biophysical perturbations (severe or mild) of an obligatory on-pathway protein folding intermediate.


2021 ◽  
Vol 22 (16) ◽  
pp. 8619
Author(s):  
Fernando Bergasa-Caceres ◽  
Herschel A. Rabitz

The initial steps of the folding pathway of the C-terminal domain of the murine prion protein mPrP(90–231) are predicted based on the sequential collapse model (SCM). A non-local dominant contact is found to form between the connecting region between helix 1 and b-sheet 1 and the C-terminal region of helix 3. This non-local contact nucleates the most populated molten globule-like intermediate along the folding pathway. A less stable early non-local contact between segments 120–124 and 179–183, located in the middle of helix 2, promotes the formation of a less populated molten globule-like intermediate. The formation of the dominant non-local contact constitutes an example of the postulated Nature’s Shortcut to the prion protein collapse into the native structure. The possible role of the less populated molten globule-like intermediate is explored as the potential initiation point for the folding for three pathogenic mutants (T182A, I214V, and Q211P in mouse prion numbering) of the prion protein.


2021 ◽  
Author(s):  
Ravichandran Vignesh ◽  
Anita Sjölander ◽  
Ganesh Venkataraman ◽  
Suresh Kumar Rayala ◽  
Gopala Krishna Aradhyam

The characteristic features of cancer cells are aberrant (acidic) intracellular pH and elevated levels of phosphatidylserine. The primary focus of cancer research is concentrated on the discovery of biomarkers directed towards early diagnosis and therapy. It has been observed that azoxymethane-treated mice demonstrate an increased expression of calnuc (a multi-domain, Ca2+- and DNA-binding protein) in their colon, suggesting it to be a good biomarker of carcinogenesis. We show that culture supernatants from tumor cells have significantly higher amounts of secreted calnuc compared to non-tumor cells, selectively packaged into exosomes. Exosomal calnuc is causal for epithelial-mesenchymal transition and atypical migration in non-tumor cells, which are key events in tumorigenesis and metastasis. In vitro studies reveal a significant affinity for calnuc towards phosphatidylserine, specifically to its C-terminal region, leading to the formation of “molten globule” conformation. Similar structural changes are observed at acidic pH (pH 4), which demonstrates the role of the acidic microenvironment in causing the molten globule conformation and membrane interaction. On a precise note, we propose that the molten globule structure of calnuc caused by aberrant conditions in cancer cells to be the causative mechanism underlying its exosome-mediated secretion, thereby driving metastasis.


2021 ◽  
Author(s):  
Simone Orioli ◽  
Kresten Lindorff-Larsen

Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. This structural dynamics makes it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely-tuned equilibrium between an inhibited and a kinase-accessible state.


Sign in / Sign up

Export Citation Format

Share Document