scholarly journals Understanding the Molecular Mechanism of Cation Permeation in the Cardiac Ryanodine Receptor (RyR2) Channel using Computational Electrophysiology

2018 ◽  
Vol 114 (3) ◽  
pp. 115a
Author(s):  
Williams E. Miranda ◽  
Van A. Ngo ◽  
S.R. Wayne Chen ◽  
Sergei Y. Noskov
2012 ◽  
Vol 140 (2) ◽  
pp. 93-108 ◽  
Author(s):  
Barbora Tencerová ◽  
Alexandra Zahradníková ◽  
Jana Gaburjáková ◽  
Marta Gaburjáková

The synergic effect of luminal Ca2+, cytosolic Ca2+, and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose–response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca2+ concentration of 100 nM over a range of luminal Ca2+ concentrations and, vice versa, at a diastolic luminal Ca2+ concentration of 1 mM over a range of cytosolic Ca2+ concentrations. Low level of luminal Ca2+ (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca2+ (8–53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca2+ levels (<500 nM) greatly amplified the effects of luminal Ca2+. Fractional inhibition by cytosolic Mg2+ was not affected by luminal Ca2+. In models, the effects of luminal and cytosolic Ca2+ could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca2+ ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca2+ likely varies in cardiac myocytes.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hitoshi Uchinoumi ◽  
Masafumi Yano ◽  
Makoto Ohno ◽  
Xiaojuan Xu ◽  
Hiroki Tateishi ◽  
...  

Mutations in cardiac ryanodine receptor (RyR2) was found to be linked with catecholaminergic polymorphic ventricular tachycardia (CPVT). To study the underlying mechanism of CPVT, we developed knock-in mice harboring the Arg-to-Ser (R2474S) mutation. The RyR2 R2474S/+ knock-in (KI) mice revealed no structural or histological abnormality in hearts. Echocardiography showed no contractile or relaxation dysfunction at rest. In all KI mice (n=6), bidirectional ventricular tachycardia (VT) was observed during or after exercise with treadmill, but never observed in wild-type (WT) mice (n=6). In intact cardiomyocytes, the frequency of Ca 2+ sparks (SpF; s −1 ·100μm −1 ) was significantly increased in KI mice, but not in WT mice (at 2 mM [Ca 2+ ]; KI:6.4±0.7, WT:0.9±0.08, p<0.01). To investigate the sensitivity of the RyR2 channel to activation by luminal Ca 2+ {[Ca 2+ ] in sarcoplasmic reticulum (SR)}, we measured cytoplasmic [Ca 2+ ] ([Ca 2+ ] C ) and luminal [Ca 2+ ] ([Ca 2+ ] L ) simultaneously in saponin-permeabilized cardiomyocytes, using Rhod-2 and Fluo-5N AM as Ca 2+ indicators, respectively. When [Ca 2+ ] C was buffered at 100 nM (by 1 mM EGTA), the spontaneous Ca 2+ sparks were frequently observed both in KI and WT cardiomyocyts (SpF: KI:22.1±0.9, WT:22.0±0.8, p=ns). When we added thapsigargin (1 μM) to the cardiomyocytes under this condition ([Ca 2+ ] C =100 nM), both SpF and [Ca 2+ ] L gradually decreased due to a decrease in SR Ca 2+ content caused by an inhibition of SR Ca 2+ ATPase. The relationship curve between SpF and [Ca 2+ ] L (SpF -[Ca 2+ ] L ) during the addition of thapsigargin was markedly shifted to the left in KI cardiomyocytes compared to WT cardiomyocytes, thereby lowering the threshold of [Ca 2+ ] L to induce Ca 2+ sparks to approximately one-fifth in KI cardiomyocytes. In conclusion, the enhanced sensitivity of the RyR2 channel to activation by [Ca 2+ ] L : i.e. decreased threshold [Ca 2+ ] L to induce spontaneous Ca 2+ release, may be a primary cause of CPVT.


2013 ◽  
Vol 20 (11) ◽  
pp. 1211-1216 ◽  
Author(s):  
L’ubomír Borko ◽  
Július Kostan ◽  
Alexandra Zahradníkova ◽  
Vladimír Pevala ◽  
Juraj Gasperík ◽  
...  

2014 ◽  
Vol 21 (8) ◽  
pp. 1062-1072 ◽  
Author(s):  
Karoly Acsai ◽  
Norbert Nagy ◽  
Zoltan Marton ◽  
Kinga Oravecz ◽  
Andras Varro

2007 ◽  
Vol 113 (2) ◽  
pp. 247-263 ◽  
Author(s):  
Angela F. Dulhunty ◽  
Nicole A. Beard ◽  
Pierre Pouliquin ◽  
Marco G. Casarotto

2021 ◽  
Vol 120 (3) ◽  
pp. 239a
Author(s):  
Yifan Hu ◽  
Kavita Iyer ◽  
Ashok R. Nayak ◽  
Thomas Klose ◽  
Jose M. Eltit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document