calcium binding site
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 22)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 28 ◽  
Author(s):  
Wanying Ji ◽  
Donghong Shi ◽  
Sai Shi ◽  
Xiao Yang ◽  
Yafei Chen ◽  
...  

: TMEM16A mediates calcium-activated transmembrane flow of chloride ion and a variety of physiological functions. The binding of cytoplasmic calcium ions of TMEM16A and the consequent conformational changes of it are the key issues to explore the relationship between its structure and function. In recent years, researchers have explored this issue through electrophysiological experiment, structure resolving, molecular dynamic simulation and other methods. The structures of TMEM16 family members resolved by cryo-Electron microscopy (cryo-EM) and X-ray crystallization provide the primarily basis for the investigation of the molecular mechanism of TMEM16A. However, the binding and activation mechanism of calcium ions in TMEM16A are still unclear and controversial. This review discusses four Ca2+ sensing sites of TMEM16A and analyze activation properties of TMEM16A by them, which will help to understand the structure-function relationship of TMEM16A and throw light on the molecular design targeting TMEM16A channel.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Gallego-Páramo ◽  
Noelia Hernández-Ortiz ◽  
Rubén M. Buey ◽  
Palma Rico-Lastres ◽  
Guadalupe García ◽  
...  

We have structurally and functionally characterized Skl and Pal endolysins, the latter being the first endolysin shown to kill effectively Streptococcus pneumoniae, a leading cause of deathly diseases. We have proved that Skl and Pal are cysteine-amidases whose catalytic domains, from CHAP and Amidase_5 families, respectively, share an α3β6-fold with papain-like topology. Catalytic triads are identified (for the first time in Amidase_5 family), and residues relevant for substrate binding and catalysis inferred from in silico models, including a calcium-binding site accounting for Skl dependence on this cation for activity. Both endolysins contain a choline-binding domain (CBD) with a β-solenoid fold (homology modeled) and six conserved choline-binding loci whose saturation induced dimerization. Remarkably, Pal and Skl dimers display a common overall architecture, preserved in choline-bound dimers of pneumococcal lysins with other catalytic domains and bond specificities, as disclosed using small angle X-ray scattering (SAXS). Additionally, Skl is proved to be an efficient anti-pneumococcal agent that kills multi-resistant strains and clinical emergent-serotype isolates. Interestingly, Skl and Pal time-courses of pneumococcal lysis were sigmoidal, which might denote a limited access of both endolysins to target bonds at first stages of lysis. Furthermore, their DTT-mediated activation, of relevance for other cysteine-peptidases, cannot be solely ascribed to reversal of catalytic-cysteine oxidation.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2565
Author(s):  
Zhijie Bao ◽  
Penglin Zhang ◽  
Na Sun ◽  
Songyi Lin

With the current study, we aimed to determine the characteristics and calcium absorption capacity of egg white peptide–calcium complex (EWP-Ca) and determine the effect of sterilization on EWP-Ca to study the possibility of EWP-Ca as a new potential calcium supplement. The results of SEM and EDS showed a high calcium chelating ability between EWP and calcium, and the structure of EWP-Ca was clustered spherical particles due its combination with calcium. The FTIR and Raman spectrum results showed that EWP could chelate with calcium by carboxyl, phosphate, and amino groups, and peptide bonds may also participate in peptide–calcium binding. Moreover, the calcium absorption of EWP-Ca measured by the intestinal everted sac model in rats was 32.38 ± 6.83 μg/mL, significantly higher than the sample with CaCl2, and the mixture of EWP and Ca (p < 0.05) revealed appropriate calcium absorption capacity. The fluorescence spectra and CD spectra showed that sterilization caused a decrease in the content of α-helix and β-sheet and a significant increase in β-turn (p < 0.05). Sterilization changed the EWP-Ca structure and decreased its stability; the calcium-binding capacity of EWP-Ca after sterilization was decreased to 41.19% (p < 0.05). Overall, these findings showed that EWP could bind with calcium, form a peptide–calcium chelate, and serve as novel carriers for calcium supplements.


Author(s):  
Kenji Okumura ◽  
Yukie Maruyama ◽  
Ryuichi Takase ◽  
Bunzo Mikami ◽  
Kousaku Murata ◽  
...  

Abstract Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.


FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Veronica F. Ilkow ◽  
Anna M. Davies ◽  
Balvinder Dhaliwal ◽  
Andrew J. Beavil ◽  
Brian J. Sutton ◽  
...  

2021 ◽  
Author(s):  
Yasaman Karami ◽  
Aracelys López-Castilla ◽  
Andrea Ori ◽  
Jenny-Lee Thomassin ◽  
Benjamin Bardiaux ◽  
...  

SUMMARYType IV pili (T4P) are distinctive dynamic filaments at the surface of many bacteria that can rapidly extend, retract and withstand strong forces. T4P are important virulence factors in many human pathogens, including Enterohemorrhagic Escherichia coli (EHEC). The structure of the EHEC T4P has been determined by integrating Nuclear Magnetic Resonance (NMR) and cryo-electron microscopy data. To better understand pilus assembly, stability and function, we performed a total of 108 μs all-atom molecular dynamics simulations of wild-type and mutant T4P. Extensive characterization of the conformational landscape of T4P in different conditions of temperature, pH and ionic strength was complemented by targeted mutagenesis and biochemical analyses. Our simulations and NMR experiments revealed a conserved set of residues defining a novel calcium-binding site at the interface between three pilin subunits. Calcium binding enhanced T4P stability ex vivo and in vitro, supporting the role of this binding site as a potential pocket for drug design.


Author(s):  
Almog Hershko Rimon ◽  
Oded Livnah ◽  
Inna Rozman Grinberg ◽  
Lizett Ortiz de Ora ◽  
Oren Yaniv ◽  
...  

A novel member of the family 3 carbohydrate-binding modules (CBM3s) is encoded by a gene (Cthe_0271) in Clostridium thermocellum which is the most highly expressed gene in the bacterium during its growth on several types of biomass substrates. Surprisingly, CtCBM3-0271 binds to at least two different types of xylan, instead of the common binding of CBM3s to cellulosic substrates. CtCBM3-0271 was crystallized and its three-dimensional structure was solved and refined to a resolution of 1.8 Å. In order to learn more about the role of this type of CBM3, a comparative study with its orthologue from Clostridium clariflavum (encoded by the Clocl_1192 gene) was performed, and the three-dimensional structure of CcCBM3-1192 was determined to 1.6 Å resolution. Carbohydrate binding by CcCBM3-1192 was found to be similar to that by CtCBM3-0271; both exhibited binding to xylan rather than to cellulose. Comparative structural analysis of the two CBM3s provided a clear functional correlation of structure and binding, in which the two CBM3s lack the required number of binding residues in their cellulose-binding strips and thus lack cellulose-binding capabilities. This is an enigma, as CtCBM3-0271 was reported to be a highly expressed protein when the bacterium was grown on cellulose. An additional unexpected finding was that CcCBM3-1192 does not contain the calcium ion that was considered to play a structural stabilizing role in the CBM3 family. Despite the lack of calcium, the five residues that form the calcium-binding site are conserved. The absence of calcium results in conformational changes in two loops of the CcCBM3-1192 structure. In this context, superposition of the non-calcium-binding CcCBM3-1192 with CtCBM3-0271 and other calcium-binding CBM3s reveals a much broader two-loop region in the former compared with CtCBM3-0271.


2020 ◽  
Vol 21 (24) ◽  
pp. 9413
Author(s):  
Anja Krajnc ◽  
Aljaž Gaber ◽  
Brigita Lenarčič ◽  
Miha Pavšič

Testicans are modular proteoglycans of the extracellular matrix of various tissues where they contribute to matrix integrity and exert cellular effects like neurite outgrowth and cell migration. Using testican-2 as a representative member of the family, we tackle the complete lack of general structural information and structure–function relationship. First, we show using isothermal titration calorimetry and modeling that extracellular calcium-binding domain (EC) has only one active calcium-binding site, while the other potential site is inactive, and that testican-2 is within extracellular matrix always in the calcium-loaded form. Next, we demonstrate using various prediction methods that N- and C-terminal regions plus interdomain connections are flexible. We support this by small-angle X-ray-scattering analysis of C-terminally truncated testican-2, which indicates that the triplet follistatin-EC-thyroglobulin domain forms a moderately compact core while the unique N-terminal is disordered. Finally, using cell exclusion zone assay, we show that it is this domain triplet that is responsible for promoting cell migration and not the N- and C-terminal regions.


2020 ◽  
Author(s):  
Sara Basse Hansen ◽  
Mateusz Dyla ◽  
Caroline Neumann ◽  
Jacob Lauwring Andersen ◽  
Magnus Kjaergaard ◽  
...  

AbstractBacteria regulate intracellular calcium concentrations by exporting calcium from the cell using active transporters. These transporters include homologues of the mammalian sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), which has served as a paradigm for the structure and mechanism of P-type ATPase ion transport. Here we present three crystal structures of the Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3− mimicking a phosphoenzyme state reveal an intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. This suggests that LMCA1 pre-organizes for dephosphorylation already at the E2P state, consistent with the rapid dephosphorylation of this pump and observations from single-molecule studies. Comparison of ion binding sites show that an arginine side-chain occupies the position equivalent to the calcium binding site I in SERCA leaving a single Ca2+-binding site in LMCA1, corresponding to SERCA site II. Absence of putative proton pathways suggest a direct mechanism of proton counter transport through the Ca2+ exchange pathways. In total, the new structures provide insight into the evolutionary divergence and conserved features of an important class of ion transporters.


Sign in / Sign up

Export Citation Format

Share Document