scholarly journals Nucleus reuniens of the midline thalamus: Link between the medial prefrontal cortex and the hippocampus

2007 ◽  
Vol 71 (6) ◽  
pp. 601-609 ◽  
Author(s):  
Robert P. Vertes ◽  
Walter B. Hoover ◽  
Klara Szigeti-Buck ◽  
Csaba Leranth
2021 ◽  
Author(s):  
Tatiana D. Viena ◽  
Gabriela E. Rasch ◽  
Timothy A. Allen

AbstractThe paraventricular nucleus (PVT) of the midline thalamus is a critical higher-order cortico-thalamo-cortical integration site that plays a critical role in various behaviors including reward seeking, cue saliency, and emotional memory. Anatomical studies have shown that PVT projects to both medial prefrontal cortex (mPFC) and hippocampus (HC). However, dual mPFC-HC projecting neurons which could serve a role in synchronizing mPFC and HC activity during PVT-dependent behaviors, have not been explored. Here we used a dual retrograde adenoassociated virus (AAV) tracing approach to characterize the location and proportion of different projection populations that send collaterals to mPFC and/or ventral hippocampus (vHC). Additionally, we examined the distribution of calcium binding proteins calretinin (CR) and calbindin (CB) with respect to these projection populations PVT. We found that PVT contains separate populations of cells that project to mPFC, vHC, and those that innervate both regions. Interestingly, dual mPFC-HC projecting cells expressed neither CR or CB. Topographically, mPFC- and vHC-projecting CB+ and CR+ cells clustered around dual projecting neurons in PVT. These results are consistent with the features of dual mPFC-vHC projecting cells in the nucleus reuniens (RE) and suggestive of a functional mPFC-PVT-vHC system that may support mPFC-vHC interactions in PVT-dependent behaviors.


2018 ◽  
Author(s):  
Karthik R. Ramanathan ◽  
Reed L. Ressler ◽  
Jingji Jin ◽  
Stephen Maren

AbstractThe nucleus reuniens (RE) is a ventral midline thalamic nucleus that interconnects the medial prefrontal cortex (mPFC) and hippocampus (HPC). Considerable data indicate that HPC-mPFC circuits are involved in contextual and spatial memory; however, it is not clear whether the RE mediates the acquisition or retrieval of these memories. To examine this question, we inactivated the RE with muscimol before either the acquisition or retrieval of Pavlovian fear conditioning in rats; freezing served as the index of fear. We found that RE inactivation before conditioning impaired the acquisition of contextual freezing, whereas inactivation of the RE prior to retrieval testing increased the generalization of freezing to a novel context; inactivation of the RE did not affect either the acquisition or expression of auditory fear conditioning. Interestingly, contextual conditioning impairments were absent when retrieval testing was also conducted after RE inactivation. Contextual memories acquired under RE inactivation were hippocampal-independent, insofar as contextual freezing in rats conditioned under RE inactivation was insensitive to intra-hippocampal infusions of the NMDA receptor antagonist, D,L-amino-5-phosophonovaleric acid (APV). Together, these data reveal that the RE supports hippocampal-dependent encoding of precise contextual memories that allow discrimination of dangerous from safe contexts. When the RE is inactive, however, alternate neural systems acquire an impoverished contextual memory that is only expressed when the RE is offline.SIGNIFICANCE STATEMENTThe midline thalamic nucleus reuniens (RE) coordinates communication between the hippocampus and medial prefrontal cortex, brain areas critical for contextual and spatial memory. Here we show that temporary pharmacological inactivation of RE impairs the acquisition and precision of contextual fear memories after Pavlovian fear conditioning in rats. However, inactivating the RE prior to retrieval testing restored contextual memory in rats conditioned after RE inactivation. Critically, we show that imprecise contextual memories acquired under RE inactivation are learned independently of the hippocampus. These data reveal that the RE is required for hippocampal-dependent encoding of precise contextual memories to support the discrimination of safe and dangerous contexts.


2019 ◽  
Vol 26 (7) ◽  
pp. 191-205 ◽  
Author(s):  
Margriet J. Dolleman-van der Weel ◽  
Amy L. Griffin ◽  
Hiroshi T. Ito ◽  
Matthew L. Shapiro ◽  
Menno P. Witter ◽  
...  

Author(s):  
James H. Austin

This chapter focuses on one nucleus of the limbic thalamus: the nucleus reuniens. It is important as a way station between the medial prefrontal cortex and the hippocampus. Its midline location and hypothalamic connections suggest that it could contribute to our subconscious memory functions.


Sign in / Sign up

Export Citation Format

Share Document