nmda receptor antagonist
Recently Published Documents


TOTAL DOCUMENTS

971
(FIVE YEARS 109)

H-INDEX

77
(FIVE YEARS 6)

2021 ◽  
Vol 12 ◽  
Author(s):  
Bijia Song ◽  
Jun-Chao Zhu

Recently, sleep has been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythm, which controls whole-body homeostasis and homeodynamics. Sleep disturbances can contribute to several physical and psychological disorders, including cardiovascular disease, obesity, depression, and cognitive dysfunction. The clinical use of the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine began in the 1970s. Over the years, physicians have used it as a short-acting anesthetic, analgesic, and antidepressant; however, in-depth research has revealed new possible applications for ketamine, such as for treating sleep disturbances and circadian rhythm disorders. The aim of this narrative review is to examine the literature on the mechanistic role of the antidepressant ketamine in affecting sleep disturbance. Additionally, we discuss the pharmacologic and pharmacokinetic mechanisms of ketamine as an antidepressant and the predictive biomarkers for ketamine’s effect on sleep and cognitive function.


2021 ◽  
Author(s):  
Sathya Chidambaram ◽  
Ranjith Kumar Manokaran

Abstract GRIN2B is a gene encoding GluN2B subunit under the family of N-methyl D-aspartate (NMDA) receptors, which is responsible for neurogenesis and cognitive processes. The role of NMDA receptor antagonists like memantine is being explored for therapies in drug-resistant epilepsies. Here, we present a case of a 20-month-old boy who presented with refractory epileptic spasms. Upon failure of multiple antiepileptic drugs, he was started on oral memantine. There was a significant reduction in average seizure episodes by ∼80%. The use of memantine along with antiepileptic drug polytherapy has proved to be beneficial in our case. Our experience with memantine and favorable outcome opens up the scope of more research into the use of NMDA receptor antagonist as a drug option for refractory epilepsies with proven genetic mutation and hence improves the overall neurodevelopmental outcome and survival chance.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1775
Author(s):  
Ewelina Bratek-Gerej ◽  
Apolonia Ziembowicz ◽  
Jakub Godlewski ◽  
Elzbieta Salinska

The over-activation of NMDA receptors and oxidative stress are important components of neonatal hypoxia–ischemia (HI). Kynurenic acid (KYNA) acts as an NMDA receptor antagonist and is known as a reactive oxygen species (ROS) scavenger, which makes it a potential therapeutic compound. This study aimed to establish the neuroprotective and antioxidant potential of KYNA in an experimental model of HI. HI on seven-day-old rats was used as an experimental model. The animals were injected i.p. with different doses of KYNA 1 h or 6 h after HI. The neuroprotective effect of KYNA was determined by the measurement of brain damage and elements of oxidative stress (ROS and glutathione (GSH) level, SOD, GPx, and catalase activity). KYNA applied 1 h after HI significantly reduced weight loss of the ischemic hemisphere, and prevented neuronal loss in the hippocampus and cortex. KYNA significantly reduced HI-increased ROS, GSH level, and antioxidant enzyme activity. Only the highest used concentration of KYNA showed neuroprotection when applied 6 h after HI. The presented results indicate induction of neuroprotection at the ROS formation stage. However, based on the presented data, it is not possible to pinpoint whether NMDA receptor inhibition or the scavenging abilities are the dominant KYNA-mediated neuroprotective mechanisms.


2021 ◽  
Author(s):  
Alexei M. Bygrave ◽  
Ayesha Sengupta ◽  
Ella P. Jackert ◽  
Mehroz Ahmed ◽  
Beloved Adenuga ◽  
...  

Synapses in the brain exhibit cell–type–specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell–type–specific differences in the composition of glutamatergic synapses, identifying Btbd11, as an inhibitory interneuron–specific synapse–enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins including Psd–95. Intriguingly, we show that Btbd11 can undergo liquid–liquid phase separation when expressed with Psd–95, supporting the idea that the glutamatergic post synaptic density in synapses in inhibitory and excitatory neurons exist in a phase separated state. Knockout of Btbd11 from inhibitory interneurons decreased glutamatergic signaling onto parvalbumin–positive interneurons. Further, both in vitro and in vivo, we find that Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell–type–specific protein that supports glutamatergic synapse function in inhibitory interneurons–with implication for circuit function and animal behavior.


2021 ◽  
Vol 15 (10) ◽  
pp. 2652-2655
Author(s):  
Mehreen Akram ◽  
Iqra Mushtaq ◽  
Rafia Kousar

Background: OCR commonly occurs during strabismus surgery, producing bradycardia, arrhythmias and even cardiac arrest after manipulation of orbital structures. Ketamine is NMDA receptor antagonist and acts as an analgesic. Aim: To determine the effect of ketamine premedication on prevention of OCR during strabismus surgery. Study design: Randomized control trial Methodology: 60 patients were randomly divided into two groups i.e., Ketamine 0.75mg/kg (Group K) and control (Group C). Group K patients were premedicated with 0.75mg/kg ketamine while Group C patients did not receive any premedication. Heart rate and ECG were observed 30 sec before and continuously after traction on extraocular muscles was applied upto end of surgery for bradycardia and arrhythmias. Percentage change in HR and presence of arrhythmias was documented. All the data was collected using case report form and analyzed using SPSS version 15. Results: In Group C, 15(50%) cases had arrhythmias while in Group K, only 4(13.33%) cases had arrhythmias. Mean HR in Group C was 118.77±6.92/min and in Group K was 101.57±15.65/min. In Group C, oculocardiac reflex was present in 23(76.7%) cases and in Group K, OCR was present in 6 (20%) cases and prevented in 24 (80%) cases. Conclusion: Premedication with 0.75mg/kg IV ketamine significantly reduces the occurrence of oculocardiac reflex during strabismus surgery. Keywords: Ketamine, Oculocardiac Reflex, Premedication, Prevention, Strabismus


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5977
Author(s):  
Marta Kruk-Slomka ◽  
Grazyna Biala

Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.


2021 ◽  
pp. 1-10
Author(s):  
Ian Masse ◽  
Luc Moquin ◽  
Caroline Bouchard ◽  
Alain Gratton ◽  
Louis De Beaumont

OBJECTIVE Alterations in amino acid concentrations are a major contributor to the persistent neurological and behavioral effects induced by concussions and mild traumatic brain injuries (TBIs). Glutamate, the most abundant excitatory amino acid in the CNS, has a major role in the pathophysiological process of concussion. The indiscriminate liberation of glutamate immediately after a concussion triggers an excitotoxic response that leads to cell death, neuronal damage, and the dysfunction of surviving neurons, largely by overactivation of N-methyl-d-aspartate (NMDA) glutamatergic receptors. The aim of the present study was to investigate the efficacy of prophylactic versus therapeutic administration of MK-801, a promising NMDA receptor antagonist, on the acute changes in amino acid extracellular concentrations involved in excitotoxicity resulting from a concussive trauma. METHODS The immediate neurochemical response to a concussion cannot be characterized in humans. Therefore, the authors used their previously validated combination of a weight-drop concussion rat model and in vivo cerebral microdialysis. The microdialysis probe was inserted inside the hippocampus and left inserted at impact to allow uninterrupted sampling of amino acids of interest immediately after concussion. The primary outcome included amino acid concentrations and the secondary outcome included righting time. Samples were taken in 10-minute increments for 60 minutes before, during, and 60 minutes after impact, and analyzed for glutamate, gamma-aminobutyric acid, taurine, glycine, glutamine, and serine using high-performance liquid chromatography. Righting time was acquired as a neurological restoration indicator. Physiological saline or 10 mg/kg MK-801 was administrated intraperitoneally 60 minutes before or immediately following induction of sham injury or concussion. RESULTS Following induction of concussion, glutamate, taurine, and glycine levels as well as righting times in cases from the MK-801 treatment group were comparable to those of vehicle-treated animals. In contrast, righting times and amino acid concentrations observed within the first 10 minutes after induction of concussion in cases assigned to the MK-801 prophylaxis group were comparable to those of sham-injured animals. CONCLUSIONS These results suggest that presynaptic actions and peak availability of MK-801 following prophylactic administration significantly inhibit the immediate and indiscriminate release of glutamate, taurine, and glycine in extracellular fluid after a concussion.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Zhimai Lyu ◽  
Dandan Huang ◽  
Dingyi Xie ◽  
Yanjun Chen ◽  
Chunmei Wu ◽  
...  

Our previous studies demonstrated that effects of moxibustion heavily relied on heat-sensitization response, a specific sensation induced by moxibustion in the ill body. On the sensation, long-term potentiation (LTP) of prelimbic cortex was attributed to heat-sensitization responses. The N-methyl-D-aspartic acid (NMDA) receptor plays a key role in LTP induction; however, little is known about the role of NMDA receptor in heat-sensitization response. The present study investigated the role of NMDA receptor in heat-sensitization response, specifically, NMDA receptor was inhibited by competitive glutamatergic antagonist, (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP), observing the frequency of heat-sensitization response in moxibustion treatment and evaluating the conducive outcomes to cerebral infarct rats for rehabilitation. Heat-sensitization response in cerebral infarct rats was regularly measured for all the samples when exposed to moxibustion. Intraperitoneal injection of CPP was conducted, and soon afterwards, a significant drop of heat-sensitization response in all the samples was measured. Moreover, moxibustion efficiency on rehabilitation was unfavourably affected in cerebral infarct rats when compared to vehicle injection control. This indicated that NMDA receptor antagonist made a negative impact on induction of heat-sensitization response and consequently affected cerebral infarct rats to rehabilitate under moxibustion treatment. It also suggested that activating NMDA receptor played a positive part in ischemic stroke rehabilitation, and regulating its activity could be a feasible way to increase heat-sensitization response, improving the effect of moxibustion.


Sign in / Sign up

Export Citation Format

Share Document