scholarly journals Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations

2013 ◽  
Vol 137 (2) ◽  
pp. 189-214 ◽  
Author(s):  
S.M. Afonso ◽  
E.M. Bonotto ◽  
M. Federson ◽  
L.P. Gimenes
2020 ◽  
Vol 13 (06) ◽  
pp. 2050051
Author(s):  
Zhinan Xia ◽  
Qianlian Wu ◽  
Dingjiang Wang

In this paper, we establish some criteria for the stability of trivial solution of population growth models with impulsive perturbations. The working tools are based on the theory of generalized ordinary differential equations. Here, the conditions concerning the functions are more general than the classical ones.


1986 ◽  
Vol 29 (3) ◽  
pp. 299-308 ◽  
Author(s):  
A. J. B. Potter

In [3] Fuller introduced an index (now called the Fuller index) in order to study periodic solutions of ordinary differential equations. The objective of this paper is to give a simple generalisation of the Fuller index which can be used to study periodic points of flows in Banach spaces. We do not claim any significant breakthrough but merely suggest that the simplistic approach, presented here, might prove useful for the study of non-linear differential equations. We show our results can be used to study functional differential equations.


2010 ◽  
Vol 2010 ◽  
pp. 1-12
Author(s):  
Quanwen Lin ◽  
Rongkun Zhuang

We present some new oscillation criteria for second-order neutral partial functional differential equations of the form(∂/∂t){p(t)(∂/∂t)[u(x,t)+∑i=1lλi(t)u(x,t-τi)]}=a(t)Δu(x,t)+∑k=1sak(t)Δu(x,t-ρk(t))-q(x,t)f(u(x,t))-∑j=1mqj(x,t)fj(u(x,t-σj)),(x,t)∈Ω×R+≡G, whereΩis a bounded domain in the EuclideanN-spaceRNwith a piecewise smooth boundary∂ΩandΔis the Laplacian inRN. Our results improve some known results and show that the oscillation of some second-order linear ordinary differential equations implies the oscillation of relevant nonlinear neutral partial functional differential equations.


1972 ◽  
Vol 47 ◽  
pp. 111-144 ◽  
Author(s):  
Yoshio Miyahara

The stability of the systems given by ordinary differential equations or functional-differential equations has been studied by many mathematicians. The most powerful tool in this field seems to be the Liapunov’s second method (see, for example [6]).


Author(s):  
S. M. Shah ◽  
Joseph Wiener

A brief survey of recent results on distributional and entire solutions of ordinary differential equations (ODE) and functional differential equations (FDE) is given. Emphasis is made on linear equations with polynomial coefficients. Some work on generalized-function solutions of integral equations is also mentioned.


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 656 ◽  
Author(s):  
Gani Stamov ◽  
Ivanka Stamova ◽  
Xiaodi Li ◽  
Ekaterina Gospodinova

The present paper is devoted to the problems of practical stability with respect to h-manifolds for impulsive control differential equations with variable impulsive perturbations. We will consider these problems in light of the Lyapunov–Razumikhin method of piecewise continuous functions. The new results are applied to an impulsive control cellular neural network model with variable impulsive perturbations.


Sign in / Sign up

Export Citation Format

Share Document