scholarly journals Bifurcation of limit cycles from a non-smooth perturbation of a two-dimensional isochronous cylinder

2016 ◽  
Vol 140 (5) ◽  
pp. 519-540
Author(s):  
C.A. Buzzi ◽  
R.D. Euzébio ◽  
A.C. Mereu
2011 ◽  
Vol 21 (11) ◽  
pp. 3181-3194 ◽  
Author(s):  
PEDRO TONIOL CARDIN ◽  
TIAGO DE CARVALHO ◽  
JAUME LLIBRE

We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in ℝn perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.


2010 ◽  
Vol 72 (3-4) ◽  
pp. 1387-1392 ◽  
Author(s):  
Jaume Llibre ◽  
Amar Makhlouf

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Peiluan Li ◽  
Yusen Wu ◽  
Xiaoquan Ding

We solve theoretically the center problem and the cyclicity of the Hopf bifurcation for two families of Kukles-like systems with their origins being nilpotent and monodromic isolated singular points.


2013 ◽  
Vol 23 (10) ◽  
pp. 1350172 ◽  
Author(s):  
WENTAO HUANG ◽  
AIYONG CHEN ◽  
QIUJIN XU

For a quartic polynomial system we investigate bifurcations of limit cycles and obtain conditions for the origin to be a center. Computing the singular point values we find also the conditions for the origin to be the eighth order fine focus. It is proven that the system can have eight small amplitude limit cycles in a neighborhood of the origin. To the best of our knowledge, this is the first example of a quartic system with eight limit cycles bifurcated from a fine focus. We also give the sufficient and necessary conditions for the origin to be an isochronous center.


2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han

We consider a class of discontinuous Liénard systems and study the number of limit cycles bifurcated from the origin when parameters vary. We establish a method of studying cyclicity of the system at the origin. As an application, we discuss some discontinuous Liénard systems of special form and study the cyclicity near the origin.


2021 ◽  
Vol 3 (1) ◽  
pp. 13-34
Author(s):  
Robert J Marks II

Continually expanding periodically translated kernels on the two dimensional grid can yield interesting, beau- tiful and even familiar patterns. For example, expand- ing circular pillbox shaped kernels on a hexagonal grid, adding when there is overlap, yields patterns includ- ing maximally packed circles and a triquetra-type three petal structure used to represent the trinity in Chris- tianity. Continued expansion yields the flower-of-life used extensively in art and architecture. Additional expansion yields an even more interesting emerging ef- florescence of periodic functions. Example images are given for the case of circular pillbox and circular cone shaped kernels. Using Fourier analysis, fundamental properties of these patterns are analyzed. As a func- tion of expansion, some effloresced functions asymp- totically approach fixed points or limit cycles. Most interesting is the case where the efflorescence never repeats. Video links are provided for viewing efflores- cence in real time.


Sign in / Sign up

Export Citation Format

Share Document