scholarly journals Exponential stability of the exact solutions and the numerical solutions for a class of linear impulsive delay differential equations

2015 ◽  
Vol 285 ◽  
pp. 32-44 ◽  
Author(s):  
G.L. Zhang ◽  
M.H. Song ◽  
M.Z. Liu
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
G. L. Zhang ◽  
M. H. Song ◽  
M. Z. Liu

The main objective of this paper is to further investigate the exponential stability of a class of impulsive delay differential equations. Several new criteria for the exponential stability are analytically established based on Razumikhin techniques. Some sufficient conditions, under which a class of linear impulsive delay differential equations are exponentially stable, are also given. An Euler method is applied to this kind of equations and it is shown that the exponential stability is preserved by the numerical process.


2018 ◽  
Vol 7 (3) ◽  
pp. 247-251
Author(s):  
Palwinder Singh ◽  
Sanjay K. Srivastava ◽  
Kanwalpreet Kaur

Abstract In present study, some sufficient conditions for the exponential stability of impulsive delay differential equations are obtained by introducing weight function in the norm and applying the concept of Lyapunov functions and Razumikhin techniques. The function ψ plays the role of weight and hence increases the rate of convergence towards stability. The obtained results are demonstrated with examples.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
X. Liu ◽  
Y. M. Zeng

A stability theory of nonlinear impulsive delay differential equations (IDDEs) is established. Existing algorithm may not converge when the impulses are variable. A convergent numerical scheme is established for nonlinear delay differential equations with variable impulses. Some stability conditions of analytical and numerical solutions to IDDEs are given by the properties of delay differential equations without impulsive perturbations.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Shiguo Peng ◽  
Liping Yang

This paper develops some new Razumikhin-type theorems on global exponential stability of impulsive functional differential equations. Some applications are given to impulsive delay differential equations. Compared with some existing works, a distinctive feature of this paper is to address exponential stability problems for any finite delay. It is shown that the functional differential equations can be globally exponentially stabilized by impulses even if it may be unstable itself. Two examples verify the effectiveness of the proposed results.


Sign in / Sign up

Export Citation Format

Share Document