Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion

2021 ◽  
Vol 386 ◽  
pp. 113210
Author(s):  
A. Shahnazi-Pour ◽  
B. Parsa Moghaddam ◽  
A. Babaei
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Anas Dheyab Khalaf ◽  
Mahmoud Abouagwa ◽  
Xiangjun Wang

AbstractThis paper presents the periodic averaging principle for impulsive stochastic dynamical systems driven by fractional Brownian motion (fBm). Under non-Lipschitz condition, we prove that the solutions to impulsive stochastic differential equations (ISDEs) with fBm can be approximated by the solutions to averaged SDEs without impulses both in the sense of mean square and probability. Finally, an example is provided to illustrate the theoretical results.


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


2017 ◽  
Vol 54 (2) ◽  
pp. 444-461 ◽  
Author(s):  
Fangjun Xu

Abstract We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.


2022 ◽  
Vol 9 ◽  
Author(s):  
Han Gao ◽  
Rui Guo ◽  
Yang Jin ◽  
Litan Yan

Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ &lt; 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.


2013 ◽  
Vol 50 (1) ◽  
pp. 29-41
Author(s):  
Alexandra Chronopoulou ◽  
Georgios Fellouris

The problem of detecting an abrupt change in the distribution of an arbitrary, sequentially observed, continuous-path stochastic process is considered and the optimality of the CUSUM test is established with respect to a modified version of Lorden's criterion. We apply this result to the case that a random drift emerges in a fractional Brownian motion and we show that the CUSUM test optimizes Lorden's original criterion when a fractional Brownian motion with Hurst index H adopts a polynomial drift term with exponent H+1/2.


Sign in / Sign up

Export Citation Format

Share Document