scholarly journals Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory

2016 ◽  
Vol 72 (3) ◽  
pp. 785-805 ◽  
Author(s):  
M.E. Golmakani ◽  
M.N. Sadraee Far
Author(s):  
Jan Awrejcewicz ◽  
Grzegorz Kudra ◽  
Olga Mazur

AbstractParametric vibrations of the single-layered graphene sheet (SLGS) are studied in the presented work. The equations of motion govern geometrically nonlinear oscillations. The appearance of small effects is analysed due to the application of the nonlocal elasticity theory. The approach is developed for rectangular simply supported small-scale plate and it employs the Bubnov–Galerkin method with a double mode model, which reduces the problem to investigation of the system of the second-order ordinary differential equations (ODEs). The dynamic behaviour of the micro/nanoplate with varying excitation parameter is analysed to determine the chaotic regimes. As well the influence of small-scale effects to change the nature of vibrations is studied. The bifurcation diagrams, phase plots, Poincaré sections and the largest Lyapunov exponent are constructed and analysed. It is established that the use of nonlocal equations in the dynamic analysis of graphene sheets leads to a significant alteration in the character of oscillations, including the appearance of chaotic attractors.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950035
Author(s):  
Chih-Ping Wu ◽  
Yen-Jung Chen

Based on the Eringen nonlocal elasticity theory and multiple time scale method, an asymptotic nonlocal elasticity theory is developed for cylindrical bending vibration analysis of simply-supported, [Formula: see text]-layered, and uniformly or nonuniformly-spaced, graphene sheet (GS) systems embedded in an elastic medium. Both the interactions between the top and bottom GSs and their surrounding medium and the interactions between each pair of adjacent GSs are modeled as one-parameter Winkler models with different stiffness coefficients. In the formulation, the small length scale effect is introduced to the nonlocal constitutive equations by using a nonlocal parameter. The nondimensionalization, asymptotic expansion, and successive integration mathematical processes are performed for a typical GS. After assembling the motion equations for each individual GS to form those of the multiple GS system, recurrent sets of motion equations can be obtained for various order problems. Nonlocal multiple classical plate theory (CPT) is derived as a first-order approximation of the current nonlocal plane strain problem, and the motion equations for higher-order problems retain the same differential operators as those of nonlocal multiple CPT, although with different nonhomogeneous terms. Some nonlocal plane strain solutions for the natural frequency parameters of the multiple GS system with and without being embedded in the elastic medium and their corresponding mode shapes are presented to demonstrate the performance of the asymptotic nonlocal elasticity theory.


Author(s):  
K. M. Liew ◽  
Yang Zhang ◽  
L. W. Zhang

Abstract:This paper presents a literature review of recent research studies on the applications of nonlocal elasticity theory in the modeling and simulation of graphene sheets (GSs). The history, development and excellent properties of GSs are introduced. The details of nonlocal elasticity theory are also presented. A systematic introduction to the application of nonlocal elasticity on linear modeling and nonlinear modeling for single-layer graphene sheets (SLGSs) and multilayered graphene sheets (MLGSs) is also provided. The necessity of determining mechanical parameters and nonlocal parameters is discussed. Recommendations for future work are particularly presented. This work is intended to review the development of GSs, give an introduction to the research studies on nonlocal elasticity theory in the modeling of GSs, and provide recommendations for future research.


Sign in / Sign up

Export Citation Format

Share Document