single layer graphene
Recently Published Documents





2022 ◽  
Vol 15 ◽  
Francesca Zummo ◽  
Pietro Esposito ◽  
Huilei Hou ◽  
Cecilia Wetzl ◽  
Gemma Rius ◽  

In recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes. Here, we compared the (morpho)mechanical and functional adaptation of rat primary hippocampal neurons when interfaced with surfaces covered with pristine single-layer graphene (pSLG) and phenylacetic acid-functionalized single-layer graphene (fSLG). Our results confirmed the intrinsic ability of glass-supported single-layer graphene to boost neuronal activity highlighting, conversely, the downturn inducible by the surface insertion of phenylacetic acid moieties. fSLG-interfaced neurons showed a significant reduction in spontaneous postsynaptic currents (PSCs), coupled to reduced cell stiffness and altered focal adhesion organization compared to control samples. Overall, we have here demonstrated that graphene substrates, both pristine and functionalized, could be alternatively used to intrinsically promote or depress neuronal activity in primary hippocampal cultures.

И.Л. Дричко ◽  
И.Ю. Смирнов ◽  
Ю.М. Гальперин ◽  
П.А. Дементьев ◽  
М.Г. Рыбин

Contactless acoustic methods were used to determine electrical parameters - electrical conductivity, carrier mobility and their concentration - in single-layer graphene deposited on the surface of lithium niobate.

2022 ◽  
pp. 108810
Eugenio Gibertini ◽  
Luca Gabatel ◽  
Andrea Lucotti ◽  
Gianlorenzo Bussetti ◽  
Claudia L. Bianchi ◽  

2022 ◽  
pp. 139330
B. Tincu ◽  
M. Avram ◽  
A. Avram ◽  
V. Tucureanu ◽  
G. Mihai ◽  

Дмитрий Петрович Бернацкий ◽  
Виктор Георгиевич Павлов

Полевые электронные эмиттеры в форме металлического острия с пленкой углерода на поверхности обладают рядом перспективных эксплуатационных свойств. Характеристики эмиттера зависят от фазового состава, толщины и однородности пленки. Определение параметров пленок толщиной в один или несколько моноатомных слоев представляет определённые трудности. В данной работе образование и характеристики углеродных наноструктур на поверхности полевых эмиттеров из иридия и рения исследуются с помощью полевой десорбционной микроскопии непрерывного режима. На полевых десорбционных изображениях области углеродных наноструктур проявляются в виде локальных вспышек (лавинообразная десорбция). При покадровом анализе видеозаписей вспышек обнаружено несколько стадий формирования вспышек и выявлены различия в протекании десорбции с углеродных наноструктур на иридии и на рении. Обнаруженные различия объясняются образованием на иридии однослойного, а на рении многослойного графена. Десорбционные изображения выявляют неоднородности и локальные различия толщины пленки. Показано, что полевая десорбционная микроскопия непрерывного режима позволяет определять закономерности формирования полевых десорбционных изображений различных углеродных наноструктур, в частности, однослойного и многослойного графена на поверхности полевого эмиттера, и проводить диагностику поверхности после науглероживания и контролировать однородность получаемого покрытия. Получаемые данные полезны для разработки технологии эффективных полевых электронных эмиттеров. Field electron emitters in the form of a metal tip with a carbon film on the surface have a number of promising operational properties. The characteristics of the emitter depend on the phase composition, thickness and uniformity of the film. Determining the parameters of films with a thickness of one or more monoatomic layers presents certain difficulties. In this paper, the formation and characteristics of carbon nanostructures on the surface of field emitters made of iridium and rhenium are studied using continuous-mode field desorption microscopy. In the field desorption images, the regions of carbon nanostructures appear as local flashes (avalanche-like desorption). Frame-by-frame analysis of flash video recordings revealed several stages of the flash formation and revealed differences in the desorption from carbon nanostructures on iridium and rhenium. The found differences are explained by formation of the single-layer graphene on iridium and a multilayer graphene on rhenium. Desorption images reveal inhomogeneities and local differences in the film thickness. It is shown that continuous-mode field desorption microscopy makes it possible to determine the regularities of formation of the field desorption images of various carbon nanostructures, in particular, the single-layer and multilayer graphene on the surface of the field emitter, and to diagnose the surface after carburization. Besides, control the uniformity of the resulting coating is possible. The obtained data are useful for developing technology of the effective field electronic emitters.

2021 ◽  
Ranjuna M K ◽  
Jayakumar Balakrishnan

Abstract We report a systematic study on the thermal transport properties of gold nanoparticles (Au NPs) decorated single-layer graphene (SLG) on a SiO2/Si substrate by the Opto-thermal Raman technique. Our results, with moderate Au NPs coverage( <10%), demonstrate an enhancement in the thermal conductivity of graphene by ~ 55% from its pristine value and a decrement in the interface conductance by a factor of 1.5. A detailed analysis of our results shows the importance of the photo-thermal conversion efficiency of Au NPs, plasmon-phonon coupling and lattice modifications in the graphene developed after gold nanoparticles deposition in enhancing the thermal conductivity and reducing the interface thermal conductance of the system. Our study paves way for a better understanding of the thermal management in such hybrid systems, which are envisioned as excellent candidates for optoelectronics and photonics applications.

Tipat Piyapatarakul ◽  
Hanzhi Tang ◽  
Kasidit Toprasertpong ◽  
Shinichi TAKAGI ◽  

Abstract We propose an optical phase modulator with a hybrid metal-oxide-semiconductor (MOS) capacitor, consisting of single-layer graphene and III-V semiconductor waveguide. The proposed modulator is numerically analyzed in conjunction with the surface conductivity model of graphene. Since the absorption of graphene at a 2 µm wavelength can be suppressed by modulating the chemical potential of graphene with the practical gate bias, the phase modulation efficiency is predicted to be 0.051 V·cm with a total insertion loss of 0.85 dB when an n-InGaAs waveguide is used, showing the feasibility of the low-loss, high-efficiency graphene/III-V hybrid MOS optical phase modulator, which is useful in the future 2-µm optical fiber communication band.

2021 ◽  
Vol 118 (51) ◽  
pp. e2112651118
Hannah Ochner ◽  
Sven Szilagyi ◽  
Sabine Abb ◽  
Joseph Gault ◽  
Carol V. Robinson ◽  

Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography’s (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase–related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.

S. T. Purcell ◽  
P. Vincent ◽  
S. Perisanu ◽  
A. Ayari ◽  
P. Poncharal

Sign in / Sign up

Export Citation Format

Share Document