scholarly journals A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian

2017 ◽  
Vol 74 (4) ◽  
pp. 784-816 ◽  
Author(s):  
Gabriel Acosta ◽  
Francisco M. Bersetche ◽  
Juan Pablo Borthagaray
2020 ◽  
Vol 6 (2) ◽  
pp. 198-209
Author(s):  
Mohamed Laghzal ◽  
Abdelouahed El Khalil ◽  
My Driss Morchid Alaoui ◽  
Abdelfattah Touzani

AbstractThis paper is devoted to the study of the homogeneous Dirichlet problem for a singular nonlinear equation which involves the p(·)-biharmonic operator and a Hardy-type term that depend on the solution and with a parameter λ. By using a variational approach and min-max argument based on Ljusternik-Schnirelmann theory on C1-manifolds [13], we prove that the considered problem admits at least one nondecreasing sequence of positive eigencurves with a characterization of the principal curve μ1(λ) and also show that, the smallest curve μ1(λ) is positive for all 0 ≤ λ < CH, with CH is the optimal constant of Hardy type inequality.


2020 ◽  
Vol 193 ◽  
pp. 111512
Author(s):  
Krzysztof Bogdan ◽  
Sven Jarohs ◽  
Edyta Kania

Author(s):  
Niels Jacob

AbstractFor a class of formally hypoelliptic differential operators in divergence form we prove a generalized Gårding inequality. Using this inequality and further properties of the sesquilinear form generated by the differential operator a generalized homogeneous Dirichlet problem is treated in a suitable Hilbert space. In particular Fredholm's alternative theorem is proved to be valid.


Author(s):  
Wei Dai ◽  
Zhao Liu ◽  
Pengyan Wang

In this paper, we are concerned with the following Dirichlet problem for nonlinear equations involving the fractional [Formula: see text]-Laplacian: [Formula: see text] where [Formula: see text] is a bounded or an unbounded domain which is convex in [Formula: see text]-direction, and [Formula: see text] is the fractional [Formula: see text]-Laplacian operator defined by [Formula: see text] Under some mild assumptions on the nonlinearity [Formula: see text], we establish the monotonicity and symmetry of positive solutions to the nonlinear equations involving the fractional [Formula: see text]-Laplacian in both bounded and unbounded domains. Our results are extensions of Chen and Li [Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018) 735–758] and Cheng et al. [The maximum principles for fractional Laplacian equations and their applications, Commun. Contemp. Math. 19(6) (2017) 1750018].


Sign in / Sign up

Export Citation Format

Share Document