scholarly journals Development of a novel monosaccharide substitution matrix for improved comparison of glycan structures

2022 ◽  
pp. 108496
Author(s):  
Akihiro Fujita ◽  
Kiyoko F. Aoki-Kinoshita
Keyword(s):  
Author(s):  
Renganayaki G. ◽  
Achuthsankar S. Nair

Sequence alignment algorithms and  database search methods use BLOSUM and PAM substitution matrices constructed from general proteins. These de facto matrices are not optimal to align sequences accurately, for the proteins with markedly different compositional bias in the amino acid.   In this work, a new amino acid substitution matrix is calculated for the disorder and low complexity rich region of Hub proteins, based on residue characteristics. Insights into the amino acid background frequencies and the substitution scores obtained from the Hubsm unveils the  residue substitution patterns which differs from commonly used scoring matrices .When comparing the Hub protein sequences for detecting homologs,  the use of this Hubsm matrix yields better results than PAM and BLOSUM matrices. Usage of Hubsm matrix can be optimal in database search and for the construction of more accurate sequence alignments of Hub proteins.


2020 ◽  
Vol 10 (2) ◽  
pp. 122-129
Author(s):  
Haoyu Lv ◽  
Yabin Tang ◽  
Fan Sun ◽  
Shimin An ◽  
Xinjie Yang ◽  
...  

Background:In recent years, more and more researches have shown that neurotransmitters can also be synthesized and released by peripheral non-neural cells. However, specificity and high sensitivity detection means were required for confirming ESCs autocrine glutamate and γ - aminobutyric acid (GABA). Glutamate and GABA are water-soluble and polar compounds which cannot be retained on a reversed phase C18 column, and their contents are often at a trace level. On the other hand, the biological matrix such as cell culture fluid contains a large number of amino acids, vitamins, carbohydrates, inorganic ions and other substances. Therefore, the main problem is the selection of the chromatographic column to avoid matrix interference.Objective:To establish a rapid and reliable method for the simultaneous determination of glutamate and GABA released from embryonic stem cells based on analytical chemistry.Methods:Glutamate and GABA released from mouse embryonic stem cells were determined on the basis of hydrophilic interaction chromatography coupled with electrospray ionization tandem Mass Spectrometry (HILIC- ESI- MS/MS), using isotope internal standards and substitution matrix method.Results:Undifferentiated embryonic stem cells autocrine glutamate and GABA and will reach releasing- reuptacking dynamic equilibriums at different time points. In contrast, neither glutamate nor GABA releasing could be detected from the MEFs, indicating the specificity release of the mESCs in the applied analytic method.Conclusion:A novel, simple, sensitive, selective and quantitative method was developed for determination of the glutamate and GABA from mouse embryonic stem cells.


2007 ◽  
Vol 67 (1) ◽  
pp. 142-153 ◽  
Author(s):  
Eran Eyal ◽  
Milana Frenkel-Morgenstern ◽  
Vladimir Sobolev ◽  
Shmuel Pietrokovski

2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Claire Lemaitre ◽  
Aurélien Barré ◽  
Christine Citti ◽  
Florence Tardy ◽  
François Thiaucourt ◽  
...  

2019 ◽  
Vol 88 (2) ◽  
pp. 136-150 ◽  
Author(s):  
Julia A. Shore ◽  
Barbara R. Holland ◽  
Jeremy G. Sumner ◽  
Kay Nieselt ◽  
Peter R. Wills

2019 ◽  
Vol 36 (1) ◽  
pp. 104-111
Author(s):  
Shuichiro Makigaki ◽  
Takashi Ishida

Abstract Motivation Template-based modeling, the process of predicting the tertiary structure of a protein by using homologous protein structures, is useful if good templates can be found. Although modern homology detection methods can find remote homologs with high sensitivity, the accuracy of template-based models generated from homology-detection-based alignments is often lower than that from ideal alignments. Results In this study, we propose a new method that generates pairwise sequence alignments for more accurate template-based modeling. The proposed method trains a machine learning model using the structural alignment of known homologs. It is difficult to directly predict sequence alignments using machine learning. Thus, when calculating sequence alignments, instead of a fixed substitution matrix, this method dynamically predicts a substitution score from the trained model. We evaluate our method by carefully splitting the training and test datasets and comparing the predicted structure’s accuracy with that of state-of-the-art methods. Our method generates more accurate tertiary structure models than those produced from alignments obtained by other methods. Availability and implementation https://github.com/shuichiro-makigaki/exmachina. Supplementary information Supplementary data are available at Bioinformatics online.


2004 ◽  
Vol 02 (04) ◽  
pp. 719-745 ◽  
Author(s):  
ARUN SIDDHARTH KONAGURTHU ◽  
JAMES WHISSTOCK ◽  
PETER J. STUCKEY

In this paper we demonstrate a practical approach to construct progressive multiple alignments using sequence triplet optimizations rather than a conventional pairwise approach. Using the sequence triplet alignments progressively provides a scope for the synthesis of a three-residue exchange amino acid substitution matrix. We develop such a 20×20×20 matrix for the first time and demonstrate how its use in optimal sequence triplet alignments increases the sensitivity of building multiple alignments. Various comparisons were made between alignments generated using the progressive triplet methods and the conventional progressive pairwise procedure. The assessment of these data reveal that, in general, the triplet based approaches generate more accurate sequence alignments than the traditional pairwise based procedures, especially between more divergent sets of sequences.


Sign in / Sign up

Export Citation Format

Share Document