scholarly journals How landslide sediments are transferred out of an alpine basin: Evidence from the epicentre of the Wenchuan earthquake

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105781
Author(s):  
Jiang Xiong ◽  
Chuan Tang ◽  
Lingfeng Gong ◽  
Ming Chen ◽  
Ning Li ◽  
...  
Landslides ◽  
2021 ◽  
Author(s):  
Fan Yang ◽  
Xuanmei Fan ◽  
Srikrishnan Siva Subramanian ◽  
Xiangyang Dou ◽  
Junlin Xiong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5191
Author(s):  
Chang Li ◽  
Bangjin Yi ◽  
Peng Gao ◽  
Hui Li ◽  
Jixing Sun ◽  
...  

Landslide inventories could provide fundamental data for analyzing the causative factors and deformation mechanisms of landslide events. Considering that it is still hard to detect landslides automatically from remote sensing images, endeavors have been carried out to explore the potential of DCNNs on landslide detection, and obtained better performance than shallow machine learning methods. However, there is often confusion as to which structure, layer number, and sample size are better for a project. To fill this gap, this study conducted a comparative test on typical models for landside detection in the Wenchuan earthquake area, where about 200,000 secondary landslides were available. Multiple structures and layer numbers, including VGG16, VGG19, ResNet50, ResNet101, DenseNet120, DenseNet201, UNet−, UNet+, and ResUNet were investigated with different sample numbers (100, 1000, and 10,000). Results indicate that VGG models have the highest precision (about 0.9) but the lowest recall (below 0.76); ResNet models display the lowest precision (below 0.86) and a high recall (about 0.85); DenseNet models obtain moderate precision (below 0.88) and recall (about 0.8); while UNet+ also achieves moderate precision (0.8) and recall (0.84). Generally, a larger sample set can lead to better performance for VGG, ResNet, and DenseNet, and deeper layers could improve the detection results for ResNet and DenseNet. This study provides valuable clues for designing models’ type, layers, and sample set, based on tests with a large number of samples.


2016 ◽  
Vol 16 (2) ◽  
pp. 483-496 ◽  
Author(s):  
D. L. Liu ◽  
S. J. Zhang ◽  
H. J. Yang ◽  
L. Q. Zhao ◽  
Y. H. Jiang ◽  
...  

Abstract. The activities of debris flow (DF) in the Wenchuan earthquake-affected area significantly increased after the earthquake on 12 May 2008. The safety of the lives and property of local people is threatened by DFs. A physics-based early warning system (EWS) for DF forecasting was developed and applied in this earthquake area. This paper introduces an application of the system in the Wenchuan earthquake-affected area and analyzes the prediction results via a comparison to the DF events triggered by the strong rainfall events reported by the local government. The prediction accuracy and efficiency was first compared with a contribution-factor-based system currently used by the weather bureau of Sichuan province. The storm on 17 August 2012 was used as a case study for this comparison. The comparison shows that the false negative rate and false positive rate of the new system is, respectively, 19 and 21 % lower than the system based on the contribution factors. Consequently, the prediction accuracy is obviously higher than the system based on the contribution factors with a higher operational efficiency. On the invitation of the weather bureau of Sichuan province, the authors upgraded their prediction system of DF by using this new system before the monsoon of Wenchuan earthquake-affected area in 2013. Two prediction cases on 9 July 2013 and 10 July 2014 were chosen to further demonstrate that the new EWS has high stability, efficiency, and prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document