scholarly journals Highly dispersed molybdenum containing mesoporous silicate (Mo-TUD-1) for olefin metathesis

2020 ◽  
Vol 343 ◽  
pp. 215-225 ◽  
Author(s):  
Anoop Uchagawkar ◽  
Anand Ramanathan ◽  
Yongfeng Hu ◽  
Bala Subramaniam
2020 ◽  
Vol 10 (16) ◽  
pp. 5525-5534 ◽  
Author(s):  
Jialiang Gu ◽  
Bingjun Zhu ◽  
Rudi Duan ◽  
Yan Chen ◽  
Shaoxin Wang ◽  
...  

MnOx–FeOx-Loaded silicalite-1 catalysts exhibit high NOx conversion at low temperatures.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


2000 ◽  
Vol 628 ◽  
Author(s):  
Takeo Yamada ◽  
Keisuke Asai ◽  
Kenkichi Ishigure ◽  
Akira Endo ◽  
Hao S. Zhou ◽  
...  

ABSTRACTMesoporous materials have attracted considerable interest because of applications in molecular sieve, catalyst, and adsorbent. It will be useful for new functional device if functional molecules can be incorporated into the pore of mesoporous material. However, it is necessary to synthesize new mesoporous materials with controlled large pore size. Recently, new class of mesoporous materials has been prepared using triblock copolymer as a template. In this paper, we reported that hexagonal and cubic structure silicate mesoporous materials can be synthesized through triblock copolymer templating, and their size was controlled by synthesis condition at condensation.


2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2013 ◽  
Vol 17 (22) ◽  
pp. 2592-2608 ◽  
Author(s):  
Fatma Hamad ◽  
Cheng Kai ◽  
Yuan Cai ◽  
Yu Xie ◽  
Yin Lu ◽  
...  

2014 ◽  
Vol 4 (2) ◽  
pp. 216-230 ◽  
Author(s):  
Xin Li ◽  
Jing Guan ◽  
Gang Yang
Keyword(s):  

2020 ◽  
Vol 875 ◽  
pp. 113862 ◽  
Author(s):  
Teng Zhang ◽  
Sumit Verma ◽  
Soojeong Kim ◽  
Tim T. Fister ◽  
Paul J.A. Kenis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document