The presence and quantification of splenic ice in the McMurdo Sound Notothenioid fish, Pagothenia borchgrevinki (Boulenger, 1902)

Author(s):  
Kim Præbel ◽  
Ben Hunt ◽  
Luke H. Hunt ◽  
Arthur L. DeVries
Polar Biology ◽  
1987 ◽  
Vol 8 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Brian A. Foster ◽  
John M. Cargill ◽  
John C. Montgomery

2003 ◽  
Vol 15 (3) ◽  
pp. 333-338 ◽  
Author(s):  
BEN M. HUNT ◽  
KEVIN HOEFLING ◽  
CHI-HING C. CHENG

We obtained two years (1999–2001) of continuous, high resolution temperature and pressure data at two near-shore shallow water sites in McMurdo Sound, Ross Sea. Contrary to the long-held assumption of constant freezing conditions in the Sound, these records revealed dynamic temperature fluctuations and substantial warming during January to March reaching peak water temperatures of about −0.5°C. They also revealed that excursions above −1.1°C, the equilibrium melting point of ice in Antarctic notothenioid fish, totalled 8–21 days during the summer. Microscopic ice crystals are known to enter these fish but ice growth is arrested by antifreeze proteins. Prior to this study there were no known mechanisms of eliminating accumulated endogenous ice. The warm temperature excursions provide for the first time a possible physical mechanism, passive melting, for ice removal. The continuous records also showed a correlation between tidal pressures and cold temperature episodes, which suggests the influx of cold currents from under the Ross Ice Shelf may provide a mechanism for ice crystal nucleation as the source of the ice in McMurdo Sound fish. The accumulation of anchor ice on one logger caused it to float up which was recorded as a decrease in pressure. This is the first evidence for the time of onset of anchor ice formation in McMurdo Sound.


Author(s):  
Chiara Papetti ◽  
Massimiliano Babbucci ◽  
Agnes Dettai ◽  
Andrea Basso ◽  
Magnus Lucassen ◽  
...  

Abstract The vertebrate mitochondrial genomes generally present a typical gene order. Exceptions are uncommon and important to study the genetic mechanisms of gene order rearrangements and their consequences on phylogenetic output and mitochondrial function. Antarctic notothenioid fish carry some peculiar rearrangements of the mitochondrial gene order. In this first systematic study of 28 species, we analysed known and undescribed mitochondrial genome rearrangements for a total of eight different gene orders within the notothenioid fish. Our reconstructions suggest that transpositions, duplications and inversion of multiple genes are the most likely mechanisms of rearrangement in notothenioid mitochondrial genomes. In Trematominae, we documented an extremely rare inversion of a large genomic segment of 5300 bp that partially affected the gene compositional bias but not the phylogenetic output. The genomic region delimited by nad5 and trnF, close to the area of the Control Region, was identified as the hot spot of variation in Antarctic fish mitochondrial genomes. Analysing the sequence of several intergenic spacers and mapping the arrangements on a newly generated phylogeny showed that the entire history of the Antarctic notothenioids is characterized by multiple, relatively rapid, events of disruption of the gene order. We hypothesised that a pre-existing genomic flexibility of the ancestor of the Antarctic notothenioids may have generated a precondition for gene order rearrangement, and the pressure of purifying selection could have worked for a rapid restoration of the mitochondrial functionality and compactness after each event of rearrangement.


2021 ◽  
pp. 1-13
Author(s):  
E.J. Chamberlain ◽  
A.J. Christ ◽  
R.W. Fulweiler

Abstract Ice-covered lakes in Antarctica preserve records of regional hydroclimate and harbour extreme ecosystems that may serve as terrestrial analogues for exobiotic environments. Here, we examine the impacts of hydroclimate and landscape on the formation history of Lake Eggers, a small ice-sealed lake, located in the coastal polar desert of McMurdo Sound, Antarctica (78°S). Using ground penetrating radar surveys and three lake ice cores we characterize the ice morphology and chemistry. Lake ice geochemistry indicates that Lake Eggers is fed primarily from local snowmelt that accreted onto the lake surface during runoff events. Radiocarbon ages of ice-encased algae suggest basal ice formed at least 735 ± 20 calibrated years before present (1215 C.E.). Persisting through the Late Holocene, Lake Eggers alternated between periods of ice accumulation and sublimation driven by regional climate variability in the western Ross Sea. For example, particulate organic matter displayed varying δ15N ratios with depth, corresponding to sea ice fluctuations in the western Ross Sea during the Late Holocene. These results suggest a strong climatic control on the hydrologic regime shifts shaping ice formation at Lake Eggers.


Sign in / Sign up

Export Citation Format

Share Document