Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets

2021 ◽  
Vol 428 ◽  
pp. 213617
Author(s):  
Jin-Hua Wang ◽  
Zhao-Yang Li ◽  
Masahiro Yamashita ◽  
Xian-He Bu
Author(s):  
Jean-Pierre Launay ◽  
Michel Verdaguer

After preliminaries about electron properties, and definitions in magnetism, one treats the magnetism of mononuclear complexes, in particular spin cross-over, showing the role of cooperativity and the sensitivity to external perturbations. Orbital interactions and exchange interaction are explained in binuclear model systems, using orbital overlap and orthogonality concepts to explain antiferromagnetic or ferromagnetic coupling. The phenomenologically useful Spin Hamiltonian is defined. The concepts are then applied to extended molecular magnetic systems, leading to molecular magnetic materials of various dimensionalities exhibiting bulk ferro- or ferrimagnetism. An illustration is provided by Prussian Blue analogues. Magnetic anisotropy is introduced. It is shown that in some cases, a slow relaxation of magnetization arises and gives rise to appealing single-ion magnets, single-molecule magnets or single-chain magnets, a route to store information at the molecular level.


2015 ◽  
Vol 44 (8) ◽  
pp. 2135-2147 ◽  
Author(s):  
Gavin A. Craig ◽  
Mark Murrie

This review describes the recent approach to obtain single-molecule magnets where the magnetic properties arise from just one first row transition metal ion in a suitable ligand field.


2021 ◽  
Vol 47 (1) ◽  
pp. 10-16
Author(s):  
Ya. A. Pankratova ◽  
Yu. V. Nelyubina ◽  
V. V. Novikov ◽  
A. A. Pavlov

Abstract The tetrahedral cobalt(II) complex [CoL2](HNEt3)2 (I), where L is 1,2-bis(methanesulfonamido)benzene, exhibiting the properties of a single-molecule magnet is synthesized and characterized. The electronic structure parameters of complex I are determined by paramagnetic NMR spectroscopy. They completely reproduce the results of less available methods of studying single-molecule magnets. The value of axial anisotropy of the magnetic susceptibility estimated for complex I (Δχax = 34.5 × 10–32 m3 at 20°C) is record-breaking among all transition metal complexes studied by the NMR method, which provides wide possibilities for the use of complex I as a paramagnetic label for structural biology or as a contrast agent and even a temperature sensor for medical diagnostics. The data obtained indicate the advantages of paramagnetic NMR spectroscopy as a method of investigation of the magnetic properties and electronic structures of highly anisotropic transition metal complexes, which are precursors of many functional materials.


2021 ◽  
Author(s):  
Malihe Babaei Zarch ◽  
Masoud Mirzaei ◽  
Maryam Bazargan ◽  
Sandeep K Gupta ◽  
Franc Meyer ◽  
...  

As an extension of our interest in polyoxometalates (POMs) and lanthanoids, we report the design and synthesis of two polyoxometalate-based frameworks under hydrothermal conditions; [Ho4(PDA)4(H2O)11][(SiO4)@W12O36]·8H2O (1) and [Tb4(PDA)4(H2O)12][(SiO4)@W12O36]·4H2O (2) (H2PDA...


Sign in / Sign up

Export Citation Format

Share Document