Efficient Sequestration of Radioactive 99TcO4- by a Rare 3-fold Interlocking Cationic Metal-Organic Framework: A Combined Batch Experiments, Pair Distribution Function, and Crystallographic Investigation

2021 ◽  
pp. 130942
Author(s):  
Kang Kang ◽  
Nannan Shen ◽  
Yanlong Wang ◽  
Lei Li ◽  
Meiyu Zhang ◽  
...  
2021 ◽  
Vol 50 (14) ◽  
pp. 5011-5022 ◽  
Author(s):  
Adam F. Sapnik ◽  
Duncan N. Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice M. Bumstead ◽  
...  

Defect engineering is used to augment the porosity of MIL-100. Incorporation of defects leads to structural collapse and ultimately causes amorphisation. Pair distribution function analysis reveals a stepwise collapse of the hierarchical structure.


Nanoscale ◽  
2020 ◽  
Vol 12 (29) ◽  
pp. 15577-15587 ◽  
Author(s):  
Celia Castillo-Blas ◽  
José María Moreno ◽  
Ignacio Romero-Muñiz ◽  
Ana E. Platero-Prats

Pair distribution function, PDF, analyses are emerging as a powerful tool to characterize non-ideal metal–organic framework (MOF) materials with compromised ordering.


2014 ◽  
Vol 43 (27) ◽  
pp. 10438-10442 ◽  
Author(s):  
M. Infas Mohideen ◽  
Phoebe K. Allan ◽  
Karena W. Chapman ◽  
Joseph A. Hriljac ◽  
Russell E. Morris

Pair distribution function analysis has been used to solve the structure of a coordination polymer material formed by ultrasound treatment of a metal–organic framework.


2012 ◽  
Vol 3 (8) ◽  
pp. 2559 ◽  
Author(s):  
Phoebe K. Allan ◽  
Karena W. Chapman ◽  
Peter J. Chupas ◽  
Joseph A. Hriljac ◽  
Catherine L. Renouf ◽  
...  

2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


Sign in / Sign up

Export Citation Format

Share Document